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ABSTRACT 

 

 Plasma proteins have been shown to bind intravenously injected nanoparticles with high affinity and this 

could have potential consequences for drug delivery applications. A subset of plasma proteins, high density 

lipoproteins (HDLs), has been found to form a major component of the biomolecular corona of injected 

nanoparticles and this could possibly lead to nanoparticle therapies being diverted to HDL receptors (SCARBI). 

 I use polystyrene nanoparticles of different surface chemistries (PS, PS-COOH and PS-NH2) and 

determine the affinity of lipoproteins for these nanoparticles. My findings indicate that the strength of binding of 

lipoproteins to nanoparticles in vitro is high enough to effect nanoparticle biodistribution in vivo. My in vitro 

binding studies also reveal that even with competition from other plasma proteins, lipoproteins still bind 

nanoparticles with moderate strength. 

 The ability of lipoproteins to redirect nanoparticles to their receptors upon binding was investigated by 

using mice models lacking SCARBI. Clodronate liposomes are utilized to eliminate the effects of macrophages so 

that I could eliminate background biodistribution. My study demonstrates that HDLs significantly affect nanoparticle 

biodistribution by comparing nanoparticle uptake and plasma lipoprotein cholesterol content in both wild-type and 

SCARBI-/-. Interestingly, nanoparticle uptake is increased in male SCARBI-/- mice following macrophage 

depletion, but the opposite is observed for females. Examination of plasma lipoprotein cholesterol content 

suggests that differences in lipoprotein and lipid metabolism between the genders could account for such 

dissimilarities. 

 To further elucidate the effects of metabolic state on nanoparticle uptake, I intravenously injected C57BL/6, 

KK-Ay and ob/ob mice with nanoparticles called, filomicelles. These mice are given two types of diets: a low-fat diet 
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(4 grams/day) and a high-fat diet ad libitum. KK-Ay and ob/ob are known to become obese upon consuming diets 

high in fat. Following obesity status, I observed that localization of filomicelles was reduced in the liver and spleen. 

In another study combining obesity and B-cell lymphoma in a mouse model, I address the potential for obese 

individuals to have a higher risk for advancing B-cell lymphoma. My results from hematology, and 

histopathological examinations of spleen and lymph node tissues indicates that obesity may have the potential to 

advance the disease. 
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1.1  Background and Significance 

 

 The leading causes of death in the world are due to noncommunicable diseases such as metabolic 

diseases, cardiovascular diseases and cancer. Recent statistical estimates by the World Health Organization show 

that half of the deaths that occurred worldwide in 2016 were attributable to these mentioned noncommunicable 

diseases (NCD) with more than 60% of NCD being related to cardiovascular diseases.1 In the United States, in 

particular, NCD accounted for more than 88% of the 2.8 million deaths that occurred in 2016 with cardiovascular 

diseases (34% of NCD) and cancer (25% of NCD) being the top-killers.1-2  

The rapid rise in these diseases has been linked to the global obesity epidemic.3-4 Current data suggests 

that more than one-third of the world’s population in 2016 was either overweight (Body Mass Index ≥ 25 kg/m2 to 

< 30 kg/m2) or obese (Body Mass Index ≥ 30 kg/m2);5 and if secular trends are to continue, epidemiologist and 

researchers alike have projected that half of the world’s adult population will be overweight or obese by 2030.6-7 In 

the United States, these 2030 projections are pretty steep with over 86% of the adult population being either 

overweight or obese and 51% obese.3, 8  

 Given these dire statistics, there is an overwhelming likelihood that patients that would potentially be 

administered drugs in the clinic will either be overweight or obese. However, the vast majority of studies that are 

carried out to develop and test the effectiveness of these drugs or drug delivery vehicles (e.g. nanoparticles) use 

lean animal models. Therefore, the need for models that explore non-ideal metabolic states is of utmost 

importance. Several elements need to be examined when addressing the effects of non-ideal metabolic states like 

obesity on nanoparticle drug delivery. These may include varying circulating lipoprotein levels, enlarged/fatty livers, 

and associated conditions like, type 2 diabetes or atherosclerosis.  
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 Circulating lipoproteins could limit nanoparticle effectiveness in reaching their desired targets. It has been 

shown in numerous studies that when nanoparticles are exposed to biological fluids (e.g. blood or plasma), 

proteins and other biomolecules bind to their surfaces and form a coating known as the protein or biomolecular 

corona.9-12 A protein or biomolecular corona defines the biological identity of a nanoparticle; therefore, it can exert 

an influence over its clearance kinetics. Lipoproteins have been shown to be components of the biomolecular 

corona in many different nanoparticles with various surface modifications.9-12 Of particular interest are high-density 

lipoproteins (HDLs) that have been found to bind strongly to nanoparticles.10-11  

HDLs could conceivably redirect nanoparticles to HDL receptors (e.g. scavenger receptor class B type I) 

on liver sinusoidal endothelial cells (LSEC) or hepatocytes of the liver,13 endothelial cells of the lung, heart etc.,14 

and thereby diminish the delivery of the therapeutic payload to targets other than tissues or cells that express 

scavenger or lipoprotein receptors. Therefore, pertinent mouse models that test the ability of HDLs to retain their 

functionality after binding nanoparticles would prove useful and insightful given the interaction and function of 

HDLs and its receptors in the body.  

Ultimately, mouse models that combine the effects of metabolic imbalances and cancer would also be of 

great significance since the overall goal is to ultimately evaluate the effects of a patient’s metabolic condition on 

targeted nanoparticle efficacy. 

 

1.2  Factors Impacting Nanoparticle Drug Delivery Efficacy 

 

 Several factors impact the delivery of nanoparticle therapeutics and these may include physicochemical 

properties such as size, shape, surface chemistry, site-specific targeting ligands, etc.15-16 Other factors like the 

aforementioned biomolecular corona and patient metabolic state are also crucial components to nanomedicine and 
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drug delivery efficacy. Due to the intricate nature of biological systems and their effect on drug delivery, it is 

worthwhile to address these factors as they would provide for a more streamlined approach in the application of 

targeted drug delivery systems. 

 

1.2.1  Biomolecular Corona 
 

 Nanoparticles injected into the bloodstream are exposed to thousands of blood proteins and other 

biomolecules (e.g. nucleic acids, sugars) which compete for the nanoparticle surface.12, 17-18 The process of 

biomolecular corona formation occurs whereby the kinetics of binding initial favor the most abundant proteins in 

the bloodstream but over a relatively short period of time (seconds to minutes) these are replaced by proteins of 

higher affinity.18-19 As the nanoparticle travels from one biological environment to another, it embodies this 

biomolecular corona “fingerprint” which can determine further associations and interchanges in its new 

environment.18, 20 Clearly, this biomolecular “fingerprint” is important in drug delivery efficacy because it can dictate 

the recognition of nanoparticle-biomolecular corona complexes by the immune system or cell-surface receptors. 

Recognition of these nanoparticles is facilitated by proteins that may or may not undergo conformational changes 

and have exposed epitopes in the biomolecular corona.21  

It is important to note, however, that proteins in the biomolecular corona can function as opsonins and 

dysopsonins.22 Dysopsonin adsorption reduces the recognition of nanoparticles by the immune system, thus, 

extending its circulation time in the body.22 As an example, apolipoproteins and albumin have been shown to bind 

nanoparticles and decrease the adsorption of opsonins such as immunoglobulin G and complement factors, 

hence inhibiting complement activation.23-24 Although complement activation can lead to the rapid clearance of 

nanoparticles in the body, it is not the only mechanism by which to predict nanoparticle clearance. A recent study 
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reported by Bertrand and coworkers25 have showed that poly(ethylene glycol)-b-poly(lactic co glycolic acid) (PEG-

PLGA) nanoparticles with low steric hindrance and absorbed apolipoprotein E (ApoE) protect the nanoparticles 

against rapid opsonization and increases blood circulation time in experiments that implemented C57BL/6 and 

ApoE-/- mice models. More importantly, they observed similar levels of complement protein C3 and other 

complement components on PEG-PLGA nanoparticles that displayed rapid and slow clearances in experiments 

that implemented C57BL/6 and complement protein C3-/- mice models. Ultimately, they demonstrated that low-

density lipoprotein receptors could also be essential to the rapid clearance of nanoparticles because of the 

presence of ApoE in the biomolecular corona. 

Evidently, the composition of the biomolecular corona is important to nanoparticle drug delivery but the 

question that requires more probing is which proteins or biomolecules in the biomolecular corona are “most 

relevant” to evaluating therapeutic effectiveness. The simple answer is, it depends. There are several complex 

elements that need to be taken into consideration. For example, the fact that every human has a unique blood 

profile that also changes with disease type coupled with different routes for nanoparticle drug administration can 

affect which proteins or biomolecules are considered “most relevant”.21, 26-27 In addition, the composition of the 

biomolecular corona is unique to each nanomaterial type, and dissimilar physicochemical properties also influence 

the biomolecular corona composition thus adding another facet of complexity to finding a one-size-fits-all solution 

to nanoparticle drug delivery.15 Therefore, one possible approach would be to have a repository where you can 

resolve the biomolecular corona of each nanoparticle type tailored to specific disease conditions. Various models 

could also be built to predict nanoparticle biological outcome after identities of potential candidates from the 

biomolecular corona are established. This proposal is plausible because we can model binding affinity constants 

for nanoparticle-protein interactions and there have already been quantitative and computational efforts to advance 
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our understanding of the biomolecular corona as it relates to predicting nanoparticle-cell association,28-31 

biodistribution,32-33 and toxicity28-29, 32.  

 Although computational developments are far from being fully realized, we can nonetheless peruse 

research studies in literature to look at major proteins of the biomolecular corona that form on different 

nanomaterials. Walkey and Chan did an extensive review on plasma proteins that bound to 63 nanomaterials by 

compiling data from 26 independent research studies.34 In their review, they discovered a subset of 125 unique 

plasma proteins that bound to at least one of the 63 nanomaterials. Of these 125 plasma proteins, 21 were found 

to constitute greater than 10% of the total absorbed biomolecular corona mass and were termed “high abundance” 

proteins. 15 of the 21 high abundance proteins were found to be associated with lipoproteins, particularly HDLs 

(Table 1.1). These associations were made by cross-matching to a compendium of HDL associated proteins by 

Davidson and coworkers (Figure 1.1).35-36 It should also be noted that approximately two-thirds of the 125 plasma 

proteins were listed in the compendium of either the HDL or LDL proteome watch list. In general, the 125 plasma 

proteins discovered on the 63 nanomaterials are involved in physiological roles related to lipid metabolism and 

transport, complement activation, immune response, inflammation, hemostasis, and metal binding or ion 

transport.35, 37  

With knowledge of plasma proteins or biomolecules that form the core of the biomolecular corona, 

scientists can then exploit such information to predict physiological responses and enhance therapeutic potential. 

Obviously, care should be taken as with any model to determine its scope and applicability since not all systems 

are translatable. A simple example is that not all in vitro systems translate in vivo; but studies that combine in vitro, 

in situ, and in vivo models would be essential in optimizing translatability.  
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Table 1.1  High absorbance proteins (>10% in biomolecular corona) associated with HDLs and LDLs34-36 

 

Protein HDL* LDL* 

Apolipoprotein A-I 1 1 

Apolipoprotein A-IV 1 1 

Apolipoprotein B-100 0 1 

Apolipoprotein C-II 1 1 

Apolipoprotein C-III 1 1 

Apolipoprotein E 1 1 

Clusterin 1 1 

Complement C3 1 0 

Fibrinogen 1 1 

Haptoglobin 1 0 

Hemoglobin 1 0 

Histidine-rich glycoprotein 1 0 

Ig gamma chain 1 0 

Inter alpha trypsin inhibitor H1 1 0 

Paraoxonase-1 1 0 

Serum albumin 1 1 
* 1 – Protein is present, 0 – Protein is absent. 

 

 

 
 

Figure 1.1  Venn diagram showing the distribution of biomolecular corona as related to the lipoproteome34-36 
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 1.2.2  Nanoparticle Properties: Effect of Size and Shape 
 

The size and shape of nanoparticles play important roles in margination dynamics, opsonization, cellular 

uptake and biodistribution. Overcoming barriers to nanoparticle drug delivery can be made possible by designing 

nanoparticles of different sizes and shapes to accumulate in desired tissues or cells of interest. Recognizing the 

roles and limitations of these factors (size and shape) in assessing nanoparticle design parameters is important to 

the field of drug delivery. 

 

1.2.2.1  Effect of Particle Size and Shape on Margination  

 

The tendency for nanoparticles to laterally drift towards endothelial walls is beneficial for nanoparticle-cell 

associations and in theory could improve the likelihood of site-specific active targeting (e.g. cancerous tumors). 

Conventionally speaking, this phenomenon is usually assigned to free-flowing leukocytes and platelets that exit the 

central blood flow and localize to a region near vessel walls known as the red blood cell-free layer; therefore, it is 

only befitting that nanoparticles be fine-tuned with similar geometries of these blood components to achieve the 

intended benefits of marginating to this red blood cell-free layer (Figure 1.2). Researchers have studied this 

margination propensity by implementing mathematical models, and their findings demonstrated that particles 

possessing a typical spherical geometry are less likely to marginate to vessel walls than nonspherical particles.38-41 

In addition to mathematical models, studies that assessed margination dynamics in more physiological conditions 

have also shown that particle size and shape are important to marginating to vessel walls.42-46  

Lee and coworkers investigated the importance of particle size on margination dynamics by employing 

intravital microscopy to monitor the flow of 200 nm and 1000 nm PEGylated fluorescent polystyrene spheres in 

the microcirculation of Balb/c mice ear.42 Results of the study revealed that the 1000 nm particles were more  
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Figure 1.2  Nanoparticle margination to red blood cell-free layer 

 

 

effectively pushed laterally to the vessel walls by red blood cells. Simulations of transport within whole blood were 

run by the group and also showed this size-dependent behavior with larger particles (500 nm and 1000 nm) 

having better margination dynamics than smaller ones (10 nm, 50 nm and 100 nm). These results would imply 

that sub-micron to micron-sized spherical particles are more effectively pushed laterally to vessel walls and may be 

favored for vascular targeting than traditional nanospheres with sizes ranging from 10 nm to 100 nm. Charoenphol 

and coworkers also examined the effect of particle size on margination dynamics and their results provide support 

to the fact that larger-sized spherical particles marginate to vessels walls more effectively than their smaller-sized 

counterparts.43 In their in vivo study, they used ApoE-/- mice aortas to investigate the adhesion of 0.5 µm and 2 

µm vascular-targeted (sialyl lewis A and anti-VCAM-1) fluorescent polystyrene spheres. Results from the study 

indicated that 2 µm particle adhesion densities were 2.5 – 3.5-fold higher in all major segments of mice aorta than 

the 0.5 µm spheres, pointing to better margination efficiency for the 2 µm spheres.  
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It should be noted that theoretical models have predicted that within a capillary flow, adhesion strength 

reduces as spherical particle diameter increases (d > ~560 nm) because of higher dislodging forces experienced 

by larger spherical particles,47 so it may be unlikely that adhesion strength would be particularly relevant in the 

Charoenphol study. Also, the surface density of ligand/antibody was the same for both spherical particles. In any 

case, regardless of the site-specific targeting moiety used on a nanoparticle, if it does not have substantial 

margination efficiency it would not be able to reach the vicinity of vessel walls to make contact with potential 

receptors. In the Charoenphol study, gravity would more than likely play a role in the margination of the larger 

spherical particles to the vessel walls since gravitational forces become more significant as particle size increases 

(d > 500 nm).40, 48 Another point worth mentioning is that a mere increase in size does not always necessitate 

better margination efficiency because other factors like the relative particle density, Brownian diffusion or van der 

Waals interaction forces can affect margination to vessel walls.40, 44, 49  

For instance, an increase in size of the neutrally-buoyant nanoparticles (10 nm, 50 nm and 100 nm) from 

the above-discussed simulation work of Lee and coworkers did not show any significant improvement in 

margination efficiency and all nanoparticles ultimately resided in the vessel core. In a study by Toy and 

coworkers,44 increasing the size of neutrally-buoyant liposomes (65 nm, 100 nm and 130 nm) caused a decrease 

in margination to vessel walls in experiments that utilized a fibronectin-coated polydimethylsiloxane microchannel 

for monitoring margination dynamics. Given that the contribution of gravity was neglected for these liposomes, the 

decrease in margination was reasoned to be attributed to larger momentum values exceeding the diffusion 

component of the liposomes towards the channel walls. Decuzzi and coworkers49 used theoretical models to study 

the margination of particles to blood vessel walls and they demonstrated that a critical radius value exist by which 

time to margination would increase up to this value before decreasing past this critical point (Figure 1.3). The 
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model showed that the critical radius was dependent on the relative density of the particle to blood to the effect that 

when relative density decreased the critical radius increased. Furthermore, as the relative density decreased van 

der Waals forces became more dominant for nanoscale particles. In other words, the critical radius would be 

higher for particles with densities closer to that of blood with buoyancy being less of an influence as particle size 

decreased to the nanoscale. Therefore, it could be possible that the sizes of the liposomes studied in Toy and 

coworkers’ study was well away from its critical radius for the experimental setup. It should be pointed out, 

however, that both the Toy and Decuzzi study were undertaken with the exclusion of blood components which are 

crucial to margination dynamics since particle collisions with red blood cells could also affect lateral displacement 

to the red blood cell-free layer.41 

 

 

 
 

Figure 1.3  Time to margination as a function of particle radius for Δρ = 103 and 104 relative density values. 

Adapted from ref.49  

 

 

An in vivo study by D’Apolitio and coworkers45 was conducted to determine the effect of particle shape on 

the margination of fluorescently labeled poly(lactic-co-glycolic acid) (PLGA) microparticles in skin vessels of 
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transgenic Tie2-green fluorescent protein (GFP expressed on vascular endothelium) mice. They employed 

intravital confocal microscopy to visualize the flow dynamics of PLGA spheres (1 µm), discs (d: 1 µm x h: 400 nm) 

and rods (d: 400 nm x h: 1.8 µm) of equal volume. Their findings indicated that the rods had the lowest 

margination propensity while discoidal and spherical microparticles had similar margination propensity. In another 

work by Thompson and coworkers,46 the margination propensity of spherical and rod-shaped particles of different 

equivalent spherical diameters (ESDs) and aspect ratios (ARs) was studied under blood flow in a parallel plate flow 

chamber lined with human umbilical vein endothelial cells. Results from the experiments showed that rod-shaped 

particles with high ARs ≥ 9 (and ESDs ≥ 1 µm) had better margination propensity – as measured by particle wall 

binding – than equivalent spheres particularly at high shear rates and disturbed flow profiles. Nanorods (500 nm 

ESD), however, did not show any improvement in particle wall binding when compared with equivalent spheres, 

even at high ARs.  

It should be mentioned that confocal imaging from experiments run under laminar blood flow (30% 

hematocrit) and at the highest wall shear rate revealed that there was no difference in localization of rod-shaped 

particles (AR 4 and 9) or equivalent spheres to the red blood cell-free layer for particles with an ESD of 2 µm. 

However, there was decreased localization for rod-shaped particles for the highest AR studied (AR = 11) when 

compared with equivalent spheres at an ESD of 1 µm. These experiments suggest that particle adhesion improved 

the results observed for rod-shaped particles. This brings up an important point of separating particle margination 

from particle adhesion since the latter is influenced by other factors such as particle ligand/antibody distribution, 

receptor density, binding strength etc. To better understand relationships between specific nanoparticle properties 

and margination in blood flow, studies need to clearly distinguish between particle margination and particle 

adhesion to prevent confounding by the latter.  
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1.2.2.2  Effect of Particle Size and Shape on Cellular Uptake 

 

 Following nanoparticle margination and site-specific adhesion, nanoparticles have to interact with the 

extracellular matrix or external membranes of target cells and then traverse this plasma membrane to deliver their 

therapeutic payload through endocytosis. Endocytosis can be classified according to different mechanisms as 

determine by cell type, nanoparticle-biomolecular corona or other targeting moieties.21, 50 Broadly speaking, the 

process would involve the wrapping of nanoparticles by the cell membrane for membrane budding that is 

subsequently pinched off to form an endocytic vesicle, followed by sorting and trafficking of the endosomal 

contents to other specialized intracellular compartments.50 Since nanoparticle cellular internalization and 

compartmentalization are essential in governing the successful delivery of its cargo, it is important to understand 

how nanoparticle properties affect such processes.  

 Jiang and coworkers studied the cellular internalization of Herceptin-coated gold and silver nanospheres 

(2 – 100 nm) in human breast cancer SK-BR-3 cells overexpressing ErbB2 receptor.51 Their study showed that 

size played an important role in cellular uptake with the 40 nm and 50 nm sized nanospheres having the most 

significant uptake. The increased internalization observed for these nanoparticle sizes was attributed to the greater 

affinity for the receptor binding sites. As size increased, so did the affinity of the nanoparticles for the receptor 

binding sites. However, the decrease in internalization observed for the larger-sized nanoparticles was ascribed to 

limited membrane wrapping. In another study, Lu and coworkers investigated the cellular internalization of 

mesoporous silica nanospheres (30 – 280 nm) in HeLa cells.52 Results of the study indicated that 50 nm-sized 

particles were highly internalized by HeLa cells with cellular uptake in the following order 50 > 30 > 110 > 280 > 

170 nm. Other researchers have also reported similar results with nanoparticle sizes around 50 nm being optimal 
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for cellular uptake;53-59 however, this overall trend could possibly be a characteristic of non-phagocytic cells (Table 

1.2). It is unclear if phagocytic cells display similar size-dependent uptake of nanospheres (Table 1.2).55, 60-65 

 Besides nanoparticle size, the nanoparticle shape can also have a significant impact on its cellular 

internalization. Barua and coworkers found that trastuzumab-coated polystyrene nanorods provided better cellular 

uptake than nanodiscs and nanospheres in BT-474 and SK-BR-3 breast cancer cell lines, with nanospheres 

exhibiting the lowest uptake.66 The increased uptake of nanorods over nanodiscs and nanospheres was ascribed 

to higher multivalent binding of trastuzumab to cell receptors as a result of increased contact area with the cell 

surface. Uptake of uncoated polystyrene nanorods and nanodiscs were less than nanospheres in tests with BT-

474 cells pointing perhaps to enhanced coating and presentation of trastuzumab-coated nonspherical particles. 

Xinglu and coworkers probed the cellular uptake of mesoporous silica nanoparticles (MSNPs) of different ARs (AR 

= 1, AR = 2 and AR = 4) in A375 human melanoma cells and found that nanoparticles with larger ARs experienced 

higher and rapid internalization than nanoparticles with smaller ARs.67 In contrast to these studies, Chithrani and 

coworkers have showed that rod-shaped gold nanoparticles exhibited lower cellular uptake in HeLa cells when 

compared with spherical gold nanoparticles (AR = 1 > AR = 3 > AR = 5).68 They reasoned that the lower uptake of 

nanorods was possibly due to the presence of residual surfactant because the nanorods were fabricated with cetyl 

trimethylammonium bromide that may have not been completely removed from the surface of the gold nanorods. 

Another reason posited was that membrane wrapping could have taken longer for nanorods since in addition to 

the AR, the absolute size and/or volume of the particle could have affected cellular internalization kinetics.69  

In terms of shape-dependent cellular uptake by phagocytic cells, Champion and Mitragotri have 

suggested that macrophages are able to use the local curvature of a particle at the point of initial contact to 

determine whether or not to initiate phagocytosis, or merely spread on the particle which they called “frustrated”  
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Table 1.2  Summary of size-dependent cellular uptake 

 

Nanoparticle(a) Size range (nm) Optimal size (nm) Cell line Reference 

Gold 2 – 90 40, 50 SK-BR-3 [51] 

Silver 5 – 90 40, 50 SK-BR-3 [51] 

MSN 30 – 280 50 HeLa [52] 

PS 20 – 100 40 1321N1, A549 [53] 

Gold 45 – 110 45 HeLa, CL1-0 [54] 

Gold 16 – 58 40(b) Raw 264.7, HepG2 [55] 

Gold 10 – 50 50 NRK [56] 

Gold 25 – 50 50 PANC1, Jurkat [57] 

LDH 50 – 350 50 MNNG/HOS [58] 

Silica 20 – 200 60 
A549, HepG2, 

NIH/3T3 
[59] 

PSCOOH 20 – 200 20 J774.A1 [60] 

PVP-IO 8 – 65 37 Raw 264.7 [61] 

PSCOOH 40 – 2000 40 

Raw 264.7, HeLa 

A549, 1321N1, 

hCMEC/D3 

[62] 

Dextran-coated 

SPIO 
62 – 394 394 HMDM [63] 

Silica-coated IO 30 – 120 None HMDM, MDDC [64] 

Dextran-coated 

SPIO 
20, 50  None HMDM [64] 

Silver(c) 20 – 75 20 THP-1 [65] 

Silver(d) 20 – 75 50, 75 THP-1 [65] 
(a) All spherical particles. (b) Positively charged gold nanoparticles displayed no size-dependent uptake. (c) Without fetal calf serum treatment. (d) With fetal calf serum treatment. MSN – 

mesoporous silica nanoparticles; PS – polystyrene; LDH – layered double hydroxide; PSCOOH – carboxylate-functionalized polystyrene; PVP-IO – Polyvinylpyrrolidone-coated iron oxide; 

SPIO – superparamagnetic iron oxide. 
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phagocytosis.70 They studied the phagocytosis of six different shapes (prolate ellipsoid, oblate ellipsoid, elliptical 

disc, rectangular disc, UFO and spheres) in NR8383 alveolar rat macrophages and determined the success of  

phagocytosis by two dimensionless parameters, Ω and V*, where Ω was related to the shape of the particle and 

the point of attachment on the macrophage while V* was defined as the ratio of the particle volume to macrophage 

volume. The authors used a phase diagram (Figure 1.4) to illustrate the regions of successful internalization (Ω ≤ 

45°, V* ≤ 1), unsuccessful internalization (Ω ≤ 45°, V* ≥ 1) and spreading (Ω > 45°). Their results suggested that 

shape played a major role in the induction of the phagocytosis process and size mainly affected total particle 

engulfment when the volume of the particle was greater than that of the macrophages. 

Padmore and coworkers reported frustrated phagocytosis after the exposure of short and long glass fibers 

to murine alveolar macrophages.71 They identified critical lengths (12 µm and 27 µm, d ~0.8 µm) by which 

frustrated phagocytosis occurred by fitting dose-response curves of stimulated cytokines (IL-1α and TNF-α) to 

short and long glass fiber populations. Differences in critical lengths stemmed from the potency and weighting of 

short and long glass fibers towards cytokine response. Concerning the overall uptake, their investigations showed 

that macrophage internalization events were less for longer fibers when compared with shorter fibers. 

 Analyses by other researchers also indicated that using higher AR or elongated particles increased the 

possibility of frustrated phagocytosis and/or immune evasion.72-75 However, for successfully phagocytosed 

nonspherical particles, high AR has also been associated with increased uptake, but this alone does not determine 

the total amount of particles internalized as discussed earlier for non-phagocytic cells. For example, Arnida and 

coworkers76 found that PEGylated gold nanorods were less readily internalized than PEGylated nanospheres in 

RAW 264.7 macrophages, but in another work by Bartneck and coworkers77 they obtained contrasting results for 

the uptake of neutral gold nanorods and nanospheres by human blood macrophages. Also, cellular uptake in  
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Figure 1.4  (A) The relationship between internalization velocity and Ω for different nanoparticle shapes. 

(B) Phagocytosis phase diagram for the different nanoparticle shapes. Adapted from ref.70 
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human blood macrophages was comparable for amine- and carboxyl-terminated PEGylated gold nanorods and 

nanospheres, thus particle shape did not influence the uptake of these nanoparticles.  

In summary, literature suggests that nanoparticle shape and size can be exploited to increase or decrease 

the cellular uptake of nanoparticles. Although general conclusions can be made regarding the size and shape of 

nanoparticles, a better understanding of the interplay of nanoparticle characteristics, cell type and mechanism of 

internalization is needed for the rational design of drug delivery vehicles. In addition, in vitro research that closely 

resembles physiological conditions should be considered in future developments. 

 

1.2.2.3  Effect of Particle Size and Shape on Biodistribution 

 

 Nanoparticles injected intravenously have to pass through the hurdles of the body’s immune system, that 

includes the mononuclear phagocyte system, to eventually reach their intended destination. Major organs of the 

body that are associated with the mononuclear phagocyte system, such as the liver and spleen, have filters that 

could preclude nanoparticle delivery to desired regions. The liver embodies discontinuous endothelia with vascular 

fenestrations that have sizes that range from 50 – 180 nm,78 while the spleen has interendothelial cell slits that 

range in size from 200 – 500 nm.79 Kidneys have a glomerular filtration system that utilize fenestrated blood 

capillaries and podocyte slit diaphragms to filter particles that are < 5 nm,80 and the lungs are known to have 

micrometer-sized particles readily accumulate within its capillaries.81 Nanoparticles generally experience rapid 

clearance from the aforementioned organs based on the cut-off pore size of the organ’s filtration system, unless 

the particles’ material structure and fluid dynamics are such that they allow extension and alignment with the flow 

of blood or streamlines around macrophages, as is the case with flexible filamentous polymer micelle assemblies 

(also known as filomicelles).72 
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Discher and coworkers showed that longer filomicelles composed of a hydrophilic poly-ethylene glycol 

(PEG) corona and either a hydrophobic core of biodegradable polycaprolactone (PCL) or inert poly-ethyl-ethylene 

were able to persist in circulation for longer periods of time when compared with shorter filomicelles (L0, 18 µm ≥ 

8 µm > 4 µm > 2 µm; d0, 22 nm to 60 nm) and spherical vesicles.72 Filomicelles of greater contour lengths were 

able to stay in circulation for up to a week while their spherical counterparts were cleared within 2 days, and this 

difference could have been due to the breakdown of the longer filomicelles into smaller fragments coupled with 

inefficient uptake of the particles by phagocytic cells. Biodistribution of the particles in Sprague-Dawley rats 

following 4 days after intravenous injection displayed the highest distribution of the PCL filomicelles (L0 = 4 µm or 

8 µm) in the liver and spleen, with distributions to the lungs and kidneys to a lesser extent.  

In another study by Discher and coworkers,82 they compared the ability of paclitaxel loaded filomicelles 

and spherical micelles to shrink xenografted tumors (human lung carcinoma cell line, A549) in Ncr nude mice. 

Their study demonstrated that filomicelles were able to increase the maximum tolerated dose of paclitaxel relative 

to spherical micelles, and the paclitaxel loaded filomicelles had the most inhibitory effect on tumor growth possibly 

due to the higher dose and the ability of filomicelles to reptate into the leaky tumor vasculature. Besides, following 

24 hours of injection with filomicelles and spherical micelles of the same paclitaxel dose (8 mg/kg), the filomicelles 

exhibited greater tumor/organ selectivity when compared with spherical micelles. The effect of this selectivity could 

be observed in the percent change of tumor/organ apoptosis from utilizing spherical micelles and filomicelles 

following 22 days of multiple 8 mg/kg injections: tumor/liver, +29%; tumor/kidney, +31%; tumor/spleen, +38%; 

tumor/heart, +60% and tumor/lung, +61%.  

A recent study reported by Kaga and coworkers83 to investigate the influence of size and shape on the 

biodistribution of poly(glycidyl methacrylate)-b-poly(oligo- (ethylene glycol) methyl ether methacrylate)-b-
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polystyrene (PGMA-b-POEGMA-b-PS) block copolymer nanoparticles demonstrated higher degrees of 

accumulation in the liver and spleen as the overall nanoparticle size increased. The nanoparticle form and 

dimensions are as follows: spherical micelles, d: 21 nm and 33 nm; rodlike micelles, d: 37 nm, contour length: 

350 nm – 450 nm; wormlike micelles, d: 45 nm, contour length: 1 – 2 µm. Biodistribution of nanoparticles in the 

HT1080 tumor-bearing athymic nude mice also showed that most of the nanoparticles were cleared from the 

blood within 2 days, and nanoparticle tumor accumulation decreased as overall nanoparticle size increased. 

Additionally, wormlike micelles had the most accumulation in the lungs while the distribution of other nanoparticles 

decreased as overall size increased. The smaller spherical micelles (21 nm) also had the highest biodistribution in 

the kidneys, pancreas and heart.  

Müllner and coworkers84 found that increasing the rigidity and aspect ratio of cylindrical polymer brushes 

(PEGMA-co-GMA, PCL-b-(PEGMA-co-GMA)) produced greater plasma clearance following intravenous injection 

in rats. This greater plasma clearance for higher AR cylindrical polymer brushes is in contrast to the works by 

Discher and coworkers where higher ARs for filomicelles resulted in greater circulation times. Such disparity could 

stem from the stability of the backbone of the cylindrical polymer brushes employed by Müllner and coworkers as 

opposed to the self-assembled filomicelles from the works of the Discher and coworkers that experienced 

fragmentation following intravenous injection, thus supporting their prolonged residence in circulation. Apart from 

an increase in clearance, the higher AR cylindrical polymer brushes also brought about greater deposition in 

mononuclear phagocyte system (MPS) organs with the most notable uptake occurring in the liver and spleen. 

Decuzzi and coworkers examined the influence of size (700 nm – 3 µm) and shape (discoidal, spherical, 

hemispherical and cylindrical; v ≈0.6 µm3) on the biodistribution of silica or silicon nanoparticles in xenografted 

MDA-MB-231 tumor-bearing nu/nu nude mice.81 Their investigations showed that majority of the spherical 
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particles accumulated in the liver, lung and spleen. At a higher dose, the smallest spherical particle, 700 nm, had 

the most accumulation in the liver and the larger spherical particles, 2.5 µm and 3.0 µm, had significant 

accumulation in the lungs as expected. Tumor accumulation decreased as spherical particle size increased. 

Discoidal particles were shown to accumulate significantly more in the lungs and heart when compared with 

hemispherical, cylindrical and spherical particles. On the other hand, cylindrical particles accumulated significantly 

more in the liver when compared with other non-spherical and spherical particles. There was higher accumulation 

of discoidal and hemispherical particles in the spleen when compared with cylindrical and spherical particles. No 

significant differences in shape effects were found for particle accumulation in the brain, kidneys and tumor. It is 

possible that the higher accumulations observed for discoidal particles in most organs were as a result of better 

margination propensity; however, lower accumulations for the liver was attributed to the inability of liver 

macrophages to engulf the particles because of their elongated shapes. 

 Black and coworkers studied the biodistribution of 50 nm PEGylated radioactive gold particles of different 

shapes (nanodiscs, nanospheres, nanorods and nanocages) in EMT6 tumor-bearing Balb/c mice.85 Twenty-four 

hours post intravenous injection, the nanostructures were mainly distributed to the liver and spleen. Nanodiscs 

and nanocages displayed greater accumulation in the lungs and spleen when compared with other nanoparticle 

shapes, while nanospheres and nanocages had higher accumulations in the heart than the other nanostructures. 

Tumor deposition was highest for the nanospheres and this may have been due to increased retention of 

nanospheres in blood circulation and a lower clearance by the liver and spleen. Nanorods exhibited the lowest 

tumor deposition (nanospheres > nanocages > nanodiscs > nanorods) and this was attributed to the low coverage 

density of PEG on the particle surface. 
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 Overall, these studies indicate that PEGylation increases the circulation time of nanoparticles in the body 

and that size and shape play important roles in biodistribution. In order to effectively target specific organs, particle 

size and shape need to be tailored to maximize delivery. In the case of tumors, smaller nanoparticles would be 

ideal for enhanced permeability but changes to the tumor microenvironment may also change the effective size for 

tumor uptake. Therefore, in order to exploit the nanomaterial’s properties, careful consideration of the nature of the 

disease and desired target should help guide nanoparticle design. 

 

1.3  Conclusions 

 

 With the ultimate goal of designing drug delivery systems to deliver their cargos to specific targets, the 

efforts that have been made to accomplish this prove that recognition by the immune system or opsonization are 

still major obstacles to successful developments. Changes in the metabolic state of an individual have therefore 

become an essential component to consider when evaluating therapeutic options to be administered because this 

could affect drug delivery.  

Nanoparticle technologies for drug delivery are growing and the rational design of these technologies to 

overcome the above barriers to effective treatment require that we understand the relationship between 

nanoparticle properties, biomolecules in different biological environments, the biomolecular corona, and the 

complexities surrounding the disease. The use of particle fabrication methods to form and modify nanoparticle 

shapes are becoming increasingly relevant to achieve this particular aim. Not only are particle sizes and shapes 

important parameters that determine margination efficiency to vessel walls, they are also crucial properties that can 

be exploited to evade recognition by the immune system. The AR of nanoparticles can be adjusted to “frustrate” 

phagocytosis and decrease cellular internalization. Generally, nanoparticles of higher AR can be used to this effect 
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and PEGylation of nanoparticles also offer steric hindrance against opsonization and tend to promote increased 

blood residence time. Sequestration of nanoparticles by MPS organs can thus be limited for prolonged periods, 

sometimes up to days, thereby increasing the probability of nanoparticles arriving at their destination. 

Although nanoparticle fabrication techniques exist that are geared to evade the immune system, there is 

still more work to be done to deepen our understanding of how the biomolecular corona formed on nanoparticle 

surfaces affects such opsonization and subsequent biodistribution. Numerous nanomaterials are available, and the 

biomolecular corona composition varies based on the properties of these nanomaterials. However, lipoproteins 

and the like are major constituents of many nanoparticle biomolecular coronas and should be investigated in 

further detail. This would be particularly important since lipid metabolism and lipoprotein receptors may be major 

aspects affecting nanoparticle drug delivery efficacy. Consequently, it is of paramount importance that we establish 

key elements governing the interconnectedness between metabolic conditions, nanoparticle corona formation and 

biodistribution that will allow for a rational design strategy and the potential for personalized medicine. 
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CHAPTER II 

The Impact of Lipoprotein Receptors and Lipid Metabolism on Nanomedicine 
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2.1  Abstract 

 

Nanoparticles introduced into the bloodstream are exposed to thousands of proteins that are competing 

for their surfaces. During transport, this competition changes the amount and class of proteins that are bound to 

the nanoparticle surface. High density lipoproteins (HDLs) have been shown to bind nanoparticle surfaces of 

different sizes and chemistries, but quantitative values are lacking. Bound HDLs could change the biodistribution of 

nanoparticles if the interaction is stable and HDLs retain their functionality.  

We determined equilibrium binding parameters for HDLs and nanoparticles using isothermal titration 

calorimetry, gel electrophoresis and a quantitative model of protein-sphere interactions. We used polystyrene 

spheres – PS, PS-COOH, and PS-NH2 – as model nanoparticles. Apolipoprotein A-I – the main structural protein 

of HDLs – was shown to bind nanoparticles with moderate binding affinities in spite of competition from other 

plasma proteins. Isothermal titration calorimetry and exploration of the secondary structure of lipoproteins indicated 

that conformational states of lipoproteins could play a role in determining their strength of binding. 

Our in vivo investigations with SCARBI-/- mice demonstrated the involvement of lipoprotein bound 

nanoparticles and lipoprotein receptors in nanoparticle biodistribution. We also determined from measurements of 

plasma HDL and LDL/VLDL cholesterol content that cholesterol metabolism was important to the uptake and 

biodistribution of injected polystyrene nanoparticles. In addition, we found that female and male mice have 

differences in relation to lipid metabolism which translated into different biodistribution profiles. Overall, this shows 

that lipid and lipoprotein metabolism are indeed important in nanoparticle drug delivery and this would have 

significant impact on the application of nanotherapies for various diseases.  
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2.2  Introduction 

 

 Over the last decades, nanotechnology-based therapeutics have been used for the treatment of various 

diseases, however, biological barriers have precluded the effectiveness of such drug delivery systems with poor 

drug biodistribution or accumulation at diseased sites being one of the major challenges.1-4 Nanoparticle-based 

drug delivery systems that are administered intravenously to a patient enter the bloodstream and encounter blood 

proteins and biomolecules that vie for a position on the surface of the nanoparticles. Surface coverage and the 

composition of the adsorbed entities is determined by their respective affinities for the nanoparticle.5-6  

 Many research studies have revealed that lipoproteins constitute a major component of the biomolecular 

corona mass surrounding different nanoparticles exposed to blood or plasma proteins.7-13 In particular, high-

density lipoproteins (HDLs) or its major associated apolipoproteins have been demonstrated to bind nanoparticles 

in vitro with high affinity. For instance, apolipoproteinA-I (ApoA-I) – the main structural protein of HDLs – has been 

shown to bind polystyrene nanoparticles, PS (24 nm) and PS-COOH (28 nm), with affinity (Kd) values of 360 nM 

and 60 nM respectively.14 Hydroxyethyl starch (HES) nanocapsules possessing different functionalities were 

shown to bind ApoA-I with Kd values of ~3 nM, ~5.3 nM, and ~185 nM for HES (275 ± 28 nm), HES-COOH (200 

± 20 nm), and HES-NH2 (256 ± 26 nm) respectively.15 Reconstituted HDL particles have also displayed high 

binding affinities to 70 nm N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles with a Kd value 

of 1 nM.16 Notwithstanding, quantitative values are still lacking for studies that measure the binding affinity of HDLs, 

or its main structural proteins, for nanoparticles that are exposed to whole plasma. In order to achieve this aim, we 

investigated the binding of lipoproteins in mouse plasma to polystyrene nanoparticles of different surface 
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chemistries. We show that binding of lipoproteins to these nanoparticles was still fairly strong (Kd in micromolar 

range) despite competition from numerous proteins or biomolecules usually present in plasma. 

 Taking into consideration the binding of lipoproteins to nanoparticles, it is conceivable that lipoproteins 

could potentially change the course of injected nanoparticles to lipoprotein receptors (e.g. scavenger receptor class 

B I) in the body. Because lipoprotein receptors can be found widely distributed throughout tissues or major organs 

of the body (liver, lung, spleen, heart and kidney),17 this could have significant consequences for nanoparticle drug 

delivery applications since delivery to potential targets would dwindle. Toxicity also becomes a major concern. 

Relevant in vivo models are thus needed to examine the distribution of nanoparticles in the body following binding 

to plasma lipoproteins in circulation. We address this issue by employing scavenger receptor class B I (SCARBI) 

mouse models that alter lipoprotein uptake, and clodronate liposomal formulations for macrophage depletion. Our 

findings demonstrate that nanoparticle distribution is indeed affected by lipoprotein receptor binding; and 

interestingly, there were differences in nanoparticle uptake and biodistribution between male and female genders 

of which lipid metabolism was implicated in the understanding of the overall observed differences. 

 

2.3  Materials and Methods 

 

2.3.1  Materials 
 

50 nm PS (08691-10) and PS-COOH (15913-10) nanoparticles were purchased from Polysciences, Inc., United 

States and used as received. 50 nm PS-NH2 were purchased from Bangs Laboratories, United States and used as 

received. 10X phosphate buffered saline powder concentrate (BP665-1), bovine serum albumin (BSA) fraction V 

(BP-1605-100), Coomassie brilliant blue R-250 (BP101-25), Tris-HCl (BP-153-300), glycerol (BP229-1), sodium 

chloride (BP358-1) and EDTA (S311) were all purchased from Fisher Scientific, United States. β-mercaptoethanol 
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(M3148) was purchased from Sigma-Aldrich, United States. Sodium dodecyl sulfate (SDS) sample buffer was 

formulated (250 mM Tris-HCl pH 6.8, 10% SDS, 30% Glycerol, 5% β-mercaptoethanol, 0.02% bromophenol 

blue). Precast protein gels (10-well NuPAGE 12% Bis-Tris and 15-well NuPAGE 4-12% Bis-Tris), 20X NuPAGE 

MOPS SDS running buffer and 1,1'-Dioctadecyl-3,3,3',3'-Tetramethylindotricarbocyanine Iodide (DiR) dye were 

purchased from Thermo Fisher Scientific, United States.  

Mouse plasma (GTX73236) was purchased from Genetex, Inc., United States and human HDLs (361-10) were 

purchased from Lee Biosolutions, Inc., United States. Thyroglobulin, ovalbumin, carbonic anhydrase, 

ribonuclease, aprotinin, dextran 2000 were all purchased from GE Healthcare, United States. MP Biomedicals 

gamma globulin from bovine plasma and BD Vacutainer plasma separation tubes (PST) coated with lithium 

heparin were purchased from Fisher Scientific, United States. PageRuler Plus Prestained 10-250kDa Protein 

Ladder was purchased from Thermo Fisher Scientific, United States. 

 

2.3.2  In Vitro Binding of Plasma Proteins to Polystyrene Nanoparticles 
 

Mouse plasma was thawed in a water bath maintained at 37°C and centrifuged at 3,000 rpm for 5 min at 4°C 

(Sorvall Legend XTR Centrifuge, Thermo Fisher Scientific, Germany). The supernatant was collected, transferred to 

new tubes and re-spun at 13,300 rpm (17,000 xg) for 3 min at 4°C (accu Spin Micro 17, Fisher Scientific, 

Germany). Concentrations of polystyrene nanoparticles (5.85 x 1012 particles/ml, calculated based on 

manufacturer’s specifications) were chosen such that there were no appreciable depletion effects from ApoA-I 

binding to the nanoparticles. Different mouse plasma dilutions were made and incubated with the polystyrene 

nanoparticles at 4°C for 2 hours on an orbital shaker (Orbitron Rotator II, Boekel Scientific, United States). 

Respective control samples were also incubated concurrently under the same conditions, and all dilutions for 
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mouse plasma were done with 1X PBS. After incubation, the samples were centrifuged (Beckman Optima LE-80K 

Ultracentrifuge, Beckman Coulter Inc., United States) at 4°C and at a speed of 40,000 rpm (Type 80 Ti rotor, 

150,528 xgmax) for 20 min to separate unbound proteins from the nanoparticles. The solid nanoparticle-protein 

pellet was washed with 1X PBS and resuspended in SDS buffer. After addition of SDS sample buffer to the 

samples containing the nanoparticle-protein pellet and also the supernatant containing unbound proteins, they 

were incubated at 95°C for 10 mins. Following protein desorption and denaturation, the samples were then loaded 

onto a protein gel and run in 1X MOPS running buffer at 200 V for 50 min. For each gel, diluted mouse plasma at 

1/20 X was used as an in-gel standard. The 1/20 X mouse plasma was calibrated for both 10-well and 15-well 

gels by using several known concentrations of BSA (Appendix A.2). Relative density values from the known 

albumin protein bands and all other protein bands were estimated using ImageJ software (http://rsbweb.nih.gov/ij) 

after staining with Coomassie blue. All of the gels were set up to include controls for both the supernatant and the 

nanoparticle-protein pellet samples, and dilutions from the sample buffer was accounted for when calculating the 

amount of proteins from needed sample bands. These in vitro experiments were carried out in triplicates. 

The above procedure was applied to another experiment, but incubations were carried out with constant mouse 

plasma or human HDL (hHDL) concentrations and increasing nanoparticle concentrations. These experiments 

were carried out once. 

 

2.3.3  HDL Isolation by Anion Exchange Chromatography  
 

Two or three milliliters of mouse plasma was passed through a sterile polyethersulfone 0.22 µm filter (Millex-GP, 

Millipore) and introduced into a 50 ml Superloop (GE Healthcare, United States) column on an ÄKTApurifier 10 

FPLC system maintained at 4°C. The mouse plasma was allowed to equilibrate in the starting buffer (1 mM EDTA, 

http://rsbweb.nih.gov/ij
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20 mM Tris-HCl; pH 8.6) and then injected via the Superloop into an anion exchange column (Source 15Q, GE 

Healthcare, United States). The sample was processed at a flow rate of 1.2 ml/min and eluted (1 mM EDTA, 500 

mM NaCl and 20 mM Tris-HCl; pH 8.4) as 1 ml fractions on a Frac-920 (GE Healthcare, United States) fraction 

collector modified to include 1.5 ml microcentrifuge tubes. Peaked fractions were run on a protein gel to determine 

purity and where to collect fractions containing HDLs. Subsequently, HDL peaked fractions were pooled and 

dialyzed against 1X PBS at 4°C.  

 

2.3.4  Protein Identification by Mass Spectrometry 
 

Bands of interest that were excised from SDS-PAGE gels and in-gel digestion was performed with trypsin 

according to a protocol by Shevchenko and coworkers.18 The resulting peptide mixtures were separated with an 

UltiMate 3000 RSLCnano system (Thermo Fisher Scientific, United States) via precolumn concentration and an 

EASY-spray ionization source (Thermo Fisher Scientific, United States). 10 µl of the sample was loaded on the a 

PepMap C18 (Thermo Fisher Scientific, United States) precolumn using 98:2 (v/v) water: acetonitrile. This solvent 

was also used to desalt the sample for 10 min following the start of the run. After 10 min, the precolumn was back 

flushed with 100% water with 0.1% formic acid. The separation used an EASY-spray column (ES800, Thermo 

Fisher Scientific, United States) over the course of 60 min. Chromatography solutions (solvent A: 100% water with 

0.1% formic acid; solvent B:100% acetonitrile with 0.1% formic acid) were used to deliver the 60 min gradient. 

The gradient is as follows: t = 0 min 100% A, 0% B; t = 10 min 100% A, 0% B; t = 35 min 5% A, 95% B; t = 45 

min 5% A, 95% B; t = 45.1 min 100% A, 0% B; t = 60 min 100% A, 0% B. The column was kept at 40 °C.  

A Thermo Scientific Q Exactive Orbitrap mass spectrometer was used to collect data. Data was collected in positive 

mode with the following ionization conditions: spray voltage 1.50 kV; capillary temperature 300°C. A full scan/data 



www.manaraa.com

37 

 

dependent Top N analysis was performed to collected full scan data and fragmentation data of the most abundant 

m/z eluting the column. Mass spectrometer settings for the full scan were: resolution 70,000; automatic gain 

control 3x106 ions; max IT time 100 ms; m/z range 200-2000. Mass spectrometer settings for the data dependent 

acquisition were: resolution 17,500; automatic gain control 1x105 ions; max IT time 50 ms; loop count 12; isolation 

window 1 m/z; normalized collisional energy 30; dynamic exclusion 10.0 s.   

Following data collection, the MaxQuant software was used to match detected parent masses and fragments to an 

in silico digested FASTA proteome with an error window of 5 ppm. 

 

2.3.5  Gel Filtration Chromatography 
 

hHDL and pooled fractions of mouse HDL (mHDL) from anion exchange chromatography were applied to a gel 

filtration column to estimate their molecular weights. A Superose 12 10/300 GL (GE Healthcare, United States) size 

exclusion column on an ÄKTA FPLC system was utilized. The column was equilibrated (50 mM phosphate, 0.15 

M NaCl, pH 7.2) and then calibrated using the following molecular mass markers: thyroglobulin (670 kDa), 

gamma globulin (150 kDa), ovalbumin (44 kDa), ribonuclease (13.7 kDa), carbonic anhydrase (29 kDa) and 

aprotinin (6.5 kDa). Blue dextran 2000 was used to determine the column void volume. The gel phase distribution 

coefficient (Kav) value was calculated as: (elution volume – column void volume) / (geometric column volume – 

column void volume). A calibration curve of Kav versus logarithm of the molecular weight (log Mr) was plotted to 

calculate the molecular weights of hHDL and mHDL. 
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2.3.6  Isothermal Titration Calorimetry (ITC) 
 

Experiments were carried out with a VP-ITC microcalorimeter (TA instruments, United States) at a temperature of 

25°C and stirring rate of 300 rpm. Ultrapure Milli-Q water was used as a reference solution for the titrations. In 

order to minimize pH change during experiments, the studies were performed at neutral pH in aqueous solution. 

Lipoproteins (mHDL and hHDL) and polystyrene nanoparticles (PS, PS-COOH, PS-NH2) were dialyzed against 

Milli-Q water, and experiments consisted of consecutive additions of lipoprotein solutions (1.92 mg/ml) from the 

syringe into nanoparticle solution (~1.2 x 10-5 mM) located in the cell of volume 1.451 ml. Lipoprotein solutions 

were added as 10 ul injections and the resulting data of heat against molar ratio were analyzed with an 

independent binding site model19 using Microcal Origin 7.0 software. The first 2 µl injection was discarded 

because of diffusion of HDL before the initiation of the experiment. Appendix A.1 contains details of the model. 

 

2.3.7  Preparation of DiR-loaded PS-COOH Nanoparticles 
 

PS-COOH with DiR was prepared by a modified solvent-diffusion method.20 Briefly, a solution containing the 

concentrated DiR (2.5 mg/ml in methanol) was added into 600 µl of PS-COOH (25 mg/ml) nanoparticle 

suspension. The solution was mixed and incubated for 15 min followed by dialysis (12 – 14 K MWCO) in 1X 

PBS. The same procedure was used for all preparations of PS-COOH-DiR labeled nanoparticles and the 

concentration of DiR was determined by UV-VIS from a DiR calibration curve. Particle size distribution of the PS-

COOH-DiR nanoparticles was determined with DLS to ensure that the size distribution after labeling was relatively 

similar (Appendix A.4).  
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2.3.8  In Vivo Studies 
 

Animal experiments were conducted using institutionally approved protocols by the Institutional Animal 

Care and Use Committee (IACUC) at the University of Tennessee, Knoxville.  

Mice that are wild-type and homozygous null for SCARBItm1Kri were bred from six female and three male mice that 

are heterozygous for SCARBItm1Kri (stock# 003379, JAX Laboratory, United States). The breeding pair consisted of 

two female mice for one male mouse in a cage. All animals had free access to drinking water and a low-fat diet 

(D12450B, Research Diets, Inc., United States), and their housing facility was maintained at room temperature with 

regular day and night cycles. In a typical experiment, mice were injected intravenously via the tail vein with 200 µl 

of either clodronate liposomes or control liposomes (Liposoma B.V., Netherlands). Female mice had an average 

weight of 20.56 g (± 1.52) while male mice had an average weight of 22.66 g (± 2.06) (Appendix A.10). After 24 

hours, mice were injected with either 100 µl of 1X PBS, DiR dye in 1X PBS or PS-COOH-DiR dyed nanoparticles. 

Twenty-four hours later, blood samples were collected via cardiac puncture with the mice under isoflurane 

anesthesia. Blood samples were collected into lithium heparin coated PST and centrifuged to obtain mouse 

plasma. Separated plasma samples were stored on ice for the duration of an experiment before freezing at -80°C 

for longer-term storage. At the end of blood collection and plasma separation, mice organs were harvested, and 

fluorescent images were obtained using a Vivo Vision IVIS Lumina (Caliper Co., United States) imaging system. 

 

2.3.9  PCR Screening for Mice Genotype 
 

Mouse tail snips were performed, and genomic DNA extractions were carried out according to manufacturer’s 

protocol using DirectAmp tissue genomic DNA amplification kit (Denville Scientific, United States). The following 

stock primers were used as recommended by JAX Laboratory for SCARBItm1kr1: oIMR7768 wild-type forward, 5’-
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ATC TCA GCC TTA GGC CCT GT-3’; oIMR7769 common, 5’-TCA AAC CCT GTG ACA ACA GC-3’; and 

oIMR7770 mutant forward, 5’-ATA GAT TCG CCC TTG TGT CC-3’. Stock primers were diluted to 100 pmoles/µl 

and then a fresh primer mix was made by diluting all primers to 10 pmoles/µl. The recipe for PCR amplification 

consisted of 4 µl of DNA extract, 1 µl of primer mix, 10 µl of Hot-Start Taq mastermix (Denville Scientific, United 

States) and 5 µl of water. PCR was carried out with an Eppendorf Mastercycler X50a (Eppendorf, Germany) under 

the following cycling conditions: 94°C for 4 min, (94°C for 20 s, 65°C for 20 s (lower by 0.5°C every cycle), 68°C 

for 20 s) 10 cycles, (94°C for 20 s, 60°C for 20 s, 72°C for 20 s) 28 cycles, 72°C for 2 min and hold at 4°C. 

Following the run, the PCR products were run on a 2% agarose gel at 100 V for 30 min. PCR products that were 

wild-type, heterozygous and mutant would have the following band sizes: 262 bp; 140 bp and 262 bp; and 140 bp 

respectively (Appendix A.9). exACTGene 50 bp mini DNA ladder (Fisher Scientific, United States) was used as the 

size marker. 

 

2.3.10  HDL and LDL/VLDL Cholesterol Quantification 
 

HDL and LDL/VLDL cholesterol quantification of mouse plasma was performed using an HDL and LDL/VLDL 

cholesterol assay kit (Abcam, United Kingdom). Optical density measurements were carried out at 570 nm. 

 

2.4  Results and Discussion 

 

2.4.1  Measurement of Binding Parameters by Gel Electrophoresis 
 

The law of mass action was used to determine the binding of ApoA-I to the different polystyrene nanoparticles. We 

employed a simplified binding model where a nanoparticle was considered to have identical independent binding 

sites such that the binding of a protein to the nanoparticle does not influence subsequent binding steps. For the 
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sake of simplicity, the final derivations shown here are given in its reduced form; the more complicated and exact 

step-by-step binding approach can be found elsewhere.21  

[𝑁] + [𝑃] ⇌ [𝑁𝑃]                                                                                                                       (2.1) 

 

[𝑁𝑇] = [𝑁𝑃] + [𝑁]                                                                                                                     (2.2) 

 

[𝑃𝑇] = [𝑁𝑃] + [𝑃]                                                                                                                       (2.3) 

 

where [N] and [P] are the concentrations of free nanoparticle and protein respectively. [NT] and [PT] are the total 

concentrations of nanoparticle and protein respectively while [NP] is the nanoparticle-protein complex 

concentration 

𝑅𝑎𝑡𝑒 𝑜𝑓 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 =  𝐾𝑓 ∙ [𝑁][𝑃]                                                                         (2.4) 

 

𝑅𝑎𝑡𝑒 𝑜𝑓 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 =  𝐾𝑟 ∙ [𝑁𝑃]                                                                              (2.5) 

 

Equating Eqn. (2.4) with Eqn. (2.5) and finding the ratio of the forward (Kf) and reverse (Kr) rate constants gives the 

expression for the association (Ka) binding constant while the inverse produces the dissociation (Kd) binding 

constant, 

𝐾𝑎 =  
[𝑁𝑃]

[𝑁][𝑃]
                                                                                                                                (2.4) 

 

𝐾𝑑 =  
[𝑁][𝑃]

[𝑁𝑃]
                                                                                                                                (2.5) 

 

If we consider the nanoparticle surface as having only one binding site, then the simple 1:1 binding from the 

interaction of protein with the binding site in Eqn. (2.1) will yield the concentration of bound protein [NP]. Equating 

Eqn. (2.2) with Eqn. (2.5) and solving for fraction bound [NP]/[NT] yields, 
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[𝑁𝑃]

[𝑁𝑇]
=  

[𝑃]

𝐾𝑑 + [𝑃]
                                                                                                                        (2.6) 

 

We however make the assumption that the polystyrene nanoparticle surface consists of multiple independent non-

interacting binding sites. Therefore, if multiple independent and identical sites are on the polystyrene nanoparticle 

then the total amount of binding sites becomes, 

𝑛[𝑁𝑇] = [𝑁𝑃] + [𝑁]                                                                                                                   (2.7) 

 

where n sites are on a nanoparticle and Eqn. (2.6) is re-expressed as, 

 

[𝑁𝑃]

𝑛[𝑁𝑇]
=  

[𝑃]

𝐾𝑑 + [𝑃]
 →  

[𝑁𝑃]

[𝑁𝑇]
=  

𝑛[𝑃]

𝐾𝑑 + [𝑃]
                                                                            (2.8) 

 

but now bound protein [NP] incorporates all of the partially saturated forms of the nanoparticle-protein complex, 

 

[𝑁𝑃] = [𝑁𝑃1] + [𝑁𝑃2] + ⋯ [𝑁𝑃𝑛] =  
[𝑁𝑇][𝑃]

𝐾𝑑1 + [𝑃]
+

[𝑁𝑇][𝑃]

𝐾𝑑2 + [𝑃]
+. . . +

[𝑁𝑇][𝑃]

𝐾𝑑𝑛 + [𝑃]
        (2.9) 

 

where n different sites can be occupied by the protein with the respective binding constant  

A plot of ApoA-I that is bound to the nanoparticles versus free ApoA-I yields a hyperbolic curve where the 

binding affinity (Kd) can be obtained at half fractional saturation (n/2). This approach can be taken given that there 

are no considerable depletion effects from the protein binding to the nanoparticles, that is, [P] is approximately [PT] 

at all concentrations used for the experiments.22 In order to check for this, the unbound ApoA-I in the test 

supernatant and the ApoA-I in control supernatant were compared. Our results from measuring the density of the 

ApoA-I protein bands in the supernatant show that our assumptions are valid (Appendix A.3-1(A) – A.3-3(A)) and 

further calculations were not needed to account for depletion effects. Kd and n were calculated by comparing the 

resulting data of fraction bound – determined from the protein bands of the ApoA-I in the nanoparticle-protein 

pellet – with the fraction bound calculated from inserting the various ApoA-I concentrations from the plasma 
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dilutions into the model binding curve (Eqn. (2.8)) and minimizing the sum of squares error. Results of the binding 

model predicted values and the experimental data are shown in Figure 2.1 – 2.3.  

Our results show that ApoA-I still has significant binding affinity for the polystyrene nanoparticles even in 

the presence of other competing plasma proteins; Kd-PSCOOH 1.1 µM, Kd-PSNH2 1.9 µM and Kd-PS 3.1 µM. In addition, 

the number of ApoA-I particles on nanoparticle surfaces was higher for the PS (n = 92) and PS-NH2 (n = 100) 

nanoparticles when compared with the PS-COOH (n = 58) nanoparticles pointing to potential surface chemistry 

effects on protein adsorption. To further elucidate the differences in binding, nanoparticle concentrations were 

increased while keeping plasma and hHDL concentrations constant. It is evident from Figure 2.4 that the depletion 

of ApoA-I in mouse plasma is hindered as PSNH2 nanoparticle concentrations are increased, but this effect is not 

noticeable for nanoparticles incubated with hHDL. It is possible that structural changes of ApoA-I and/or surface 

displacements by other proteins may have played a role in inhibiting ApoAI binding to PS-NH2 nanoparticles in 

whole plasma.  

 

 

 
 

Figure 2.1  Saturation Binding Curve of ApoA-I to PS Nanoparticles 
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Figure 2.2  Saturation Binding Curve of ApoA-I to PS-COOH Nanoparticles 

 

 

 
 

Figure 2.3  Saturation Binding Curve of ApoA-I to PS-NH2 Nanoparticles 
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Researchers have demonstrated that PS-NH2 nanoparticles disturb the secondary structure of ApoA-I 

upon binding and this becomes even more pronounced at higher nanoparticle concentrations.14 Our investigations 

using circular dichroism (CD) confirmed their results after we incubated mHDL purified from whole plasma with 

PS-NH2 nanoparticles (Appendix A.5). Another possibility for the observed differences in the depletion of ApoA-I 

in mouse plasma by PS-NH2 nanoparticles could be because of the presence of nanoparticle-bound proteins in 

the supernatant. However, our studies using UV-VIS to examine the absorbance profile of both control and test 

samples after ultracentrifugation illustrate that this is clearly not the case (Appendix A.6) and that all particles are 

pelleted at the high g-forces. Restricted depletion of ApoA-I was therefore attributed to conformational changes of 

lipoproteins from binding to PS-NH2 nanoparticles and the possible competition from other plasma proteins 

following the induced change. 

 

 

 
 

Figure 2.4  Fraction Bound of ApoAI from (A) Mouse Plasma and (B) hHDL on Polystyrene Nanoparticles 
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2.4.2  mHDL Purification by Anion Exchange Chromatography 
 

In anion exchange chromatography, negatively charged molecules are attracted to the positively charged 

column (Source 15Q). This method utilized the characteristic that the relationship between the net surface charge 

experienced by a protein and the pH is unique to each individual protein. ApoA-I, the primary constituent of HDLs, 

should bind the positively charged column at the underlying pH of the buffer since it is greater than its isoelectric 

point (pI 5.3 – 5.823-24). Bound proteins were eluted when salt ions of NaCl competed for a spot on the charged 

surface of the column. As we increased the salt concentration, it promoted the elution of one or more distinct 

proteins (Appendix A.7). Proteins having a lower net charge or weaker interaction were eluted first while those 

having a higher net charge or interaction with the column were eluted in later fractions. Albumin, a common 

contaminant found in the purification of HDLs from plasma was mainly eluted at earlier elution fraction (Appendix 

A.7) steps while HDL fractions were eluted at higher salt gradients since their ionic strength was greater at the 

prevailing pH. After the %elution buffer and fraction numbers were established, we considered reducing the 

%elution gradient at the fraction numbers coinciding with the elution of HDLs (Figure 2.5 – 2.6).  

The initial salt gradient scheme employed 75% of elution buffer at the 85th fraction; this was changed to 

70% but the gradient of %elution buffer remained the same, about 0.053% elution buffer for every 1 ml fraction. 

The change in the %elution buffer allowed us to obtain more fractions of HDLs (Figure 2.7); however, the salt 

gradient scheme could be optimized further for the acquisition of better resolved fractions. Figure 2.8 shows the 

HDL pooled fractions from the purification procedures. As a result of the attained protein gel profiles, we opted not 

to include fractions lower than 90 for future experiments with ITC.  
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Figure 2.5  Elution of mHDLs and other Plasma Proteins at the Initial Salt Gradient Scheme. Left Panel: a-n, 

fraction 75 – 88; Right Panel: a-f, fraction 96 – 101; g-l, fraction 89-95. 

 

 

 
 

Figure 2.6  Chromatograms of the Purification of Lipoproteins from Mouse Plasma. Left Panel: Initial Salt Gradient 

Scheme. Right Panel: Final Salt Gradient Scheme. Linear gradient additions of elution buffer initiates after initial 

unbound plasma proteins are released from the column. 
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Figure 2.7  Elution of mHDLs and other Plasma Proteins from the Final Salt Gradient Scheme. Left Panel: a-n, 

fraction 76 – 89. Right Panel: a-n, 90 – 103 

 

 

 
 

Figure 2.8  Peaked Pooled Fraction of mHDLs from Anion Exchange Chromatography. Left Panel: mHDL Profiles 

in a 10-well Gel from Using the Initial Salt Gradient Scheme; a- fraction 87 - 88 and 91 – 94; b- 87 - 90. Right 

Panel: mHDL Profiles in a 15-well Gel from Using the Final Salt Gradient Scheme; a, 88 – 89; b, 90 – 93; c, 94 – 

103; d, 90 – 103. 
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2.4.3  Measurement of HDL Binding Parameters by ITC 
 

ITC is a commonly used technique to study the adsorption and thermodynamic parameters from the 

binding of biomolecules and ligands in solution. Since the experiments are carried out in situ, it enables us to 

directly obtain binding parameters for nanoparticle-protein interactions in solution and also to determine 

associations that may be favorable. Titrations were analyzed for the twenty-seven 10 µl injections of HDLs into 

nanoparticle solution in the cell, and the generated adsorption isotherms and heat changes from titrations are 

shown in Figure 2.9 – 2.10. All binding isotherms were fitted according to an independent binding model 

(Appendix A.1).19 

Examining the adsorption isotherms provides a quick way of gaining insight into the nature of binding 

between the HDLs and polystyrene nanoparticles. We can see from the steepness of the adsorption isotherms that 

the hHDLs have a higher binding affinity for PS and PS-COOH nanoparticles when compared with the mHDLs. 

However, it is difficult to make any inferences by visual inspection of the adsorption isotherms corresponding to 

PS-NH2 and HDL titrations except that mHDLs have a higher affinity to PS-NH2 than PS and PS-COOH. Table 2.1 

provides a summary of the values obtained from fitting the data according to the independent site binding model. 

Stoichiometry and binding affinity values from protein gel electrophoresis measurements are also included for 

reference.  

The results from the ITC experiment suggest that roughly 30 to 40 proteins constitute the corona proteins 

from the interaction of polystyrene nanoparticles with mHDLs. These values are in good agreement with the study 

performed with gel electrophoresis where the stoichiometry of binding of ApoA-I for PS, PS-COOH and PS-NH2 

nanoparticles are 92, 58 and 100 respectively. If HDLs are assumed to have around 3 – 4 ApoA-I molecules,25 

then this translates ideally to about less than equal to 31, 19 and 33 molecules of mHDLs on the PS, PS-COOH 
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Figure 2.9  ITC Data from Titrating hHDL into Polystyrene Nanoparticles. (A) hHDL + PS. (B) hHDL + PS-COOH. 

(C) hHDL + PS-NH2. The top panels represent the raw data from titrations after referenced baseline correction. The 

bottom panel are the integrated heats from each peak fitted to an independent binding model (solid lines). 

 

 

 
 

Figure 2.10  ITC Data from Titrating mHDL into Polystyrene Nanoparticles. (A) mHDL + PS. (B) mHDL + PS-

COOH. (C) mHDL + PS-NH2. The top panels represent the raw data from titrations after referenced baseline 

correction. The bottom panel are the integrated heats from each peak fitted to an independent binding model (solid 

lines). 
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Table 2.1  Adsorption Parameters Obtained from ITC and Protein Gel Electrophoresis 

 

Protein Nanoparticle n Ka (µM-1) Kd (µM) ΔH (kcal/mol) ΔS (cal/mol K) 

mHDL PS 30 ± 4.99 2.50 ± 0.511 0.4 -596.2 ± 12.51 -1970 

 PS-COOH 36.5 ± 8.91 1.11 ± 0.227 0.9 -1036 ± 318.2 -3450 

 PS-NH2 30 ± 0.678 39.5 ± 6.65 0.025 -711.3 ± 21.53 -2350 

hHDL PS 49 ± 1.44 11.1 ± 1.57 0.09 -450.8 ± 17.61 -1480 

 PS-COOH 34.2 ± 1.72 5.44 ± 0.596 0.184 -666.1 ± 42.06 -2200 

 PS-NH2 37 ± 15.2 4.60 ± 0.873 0.217 -295.6 ± 13.26 -962 

ApoA-I 

from 

mPlsm* 

PS 92 0.32 3.1 - - 

PS-COOH 58 0.91 1.1 - - 

PS-NH2 100 0.53 1.9 - - 
*ApoA-I from whole mouse plasma. Experiments were carried out at 4 Celsius 

 

 

and PS-NH2 nanoparticles respectively. It should be remembered that the experimental conditions for both 

systems are different, and that could account for the differences observed in the binding of lipoproteins to the 

nanoparticles.  

 Stoichiometry values for hHDLs are slightly dissimilar from mHDLs and this is expected since the molar 

mass and HDL species are different. The molar mass as estimated by gel filtration chromatography was 140.8 kDa 

and 276.5 kDa for hHDLs and mHDLs respectively (Appendix A.8). It is expected that a higher molecular weight 

(MW) protein occupy less area on a nanoparticle surface given its size and the available area for binding. Binding 

affinities for the hHDL group revealed that the Kd values for PS-COOH and PS-NH2 were comparable and that the 

highest affinity was for PS. However, mHDLs displayed a different trend with mHDLs binding to PS-NH2 

possessing the highest affinity (PS-COOH < PS < PS-NH2).  

Conformational changes of the mHDLs may have played a role in the high values observed for binding to 

PS-NH2. Recently, Müller and coworkers employed ITC to study the binding of lipoproteins to PS nanoparticles 

and from results of their investigations they indicated that lipoproteins that first come into contact with PS 
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nanoparticles disintegrate and promote the complete saturation of the nanoparticle surface by lipids before 

additional lipoproteins bind to form the biomolecular corona.26 Therefore, it is seems probable that conformational 

changes in the mHDLs could have fostered the increased binding affinity for PS-NH2. Our CD data (Appendix A.5) 

and those of other researchers14 showing the loss in secondary structure of lipoproteins upon interaction with 

PSNH2 nanoparticles lend credence to this point, suggesting that this could be the case. It is possible that specific 

conformational states allow for the undocking of the lipid component of HDLs which facilitates disintegration, lipid 

binding to the nanoparticles and ultimately the binding of lipoprotein complexes.  

It should be noted, however, that a higher conformational change does not necessitate tighter binding, as 

has been recognized in other studies.27-28 In our study, hHDLs binding to PS-NH2 had the lowest binding affinity 

but its entropy was highest for all three nanoparticle types while hHDLs binding to PS had the highest binding 

affinity, but its entropy was lower. Research by Kono and coworkers suggest that ApoA-I could have different 

conformations (open or closed conformation anchored by the C-terminal domain) at the surface of a lipid particle 

depending on the ApoA-I concentration and cholesterol content on the particle.29 From their investigations, they 

proposed a mechanism whereby high cholesterol content (and low ApoA-I surface concentration) on the lipid 

particle promotes an open conformation while low cholesterol content (and high ApoA-I surface concentration) 

promotes the closed conformational state. Consequently, it appears plausible that there is an interplay between 

specific conformational states on lipoprotein molecules that enhances lipid release and binding to nanoparticles. 

 

2.4.4  Effect of Lipoprotein Binding and SCARBI Receptors on Nanoparticle Biodistribution 
 

 With Sarah Kauffman, we bred mice homozygous null for SCARBI. Mice were genotyped using PCR 

(Appendix A.9). Following intravenous injections with clodronate liposomes, it is expected that hepatic and splenic 
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macrophages be eliminated within 24 hours after administration of the recommended 0.01ml/g dose.30-31 

Macrophage depletion in the liver and spleen helped to decouple the effects of macrophage activity in these 

organs on nanoparticle uptake. We see from Figure 2.11 – 2.12 that after macrophage depletion, the uptake of PS-

COOH nanoparticles in the livers of male SCARBI-/- mice was significantly reduced. Interestingly, there was no 

significant change in the spleen. The lungs were considerably affected by the injection of clodronate liposomes as 

is evident in the significantly reduced uptake in male SCARBI-/- mice. In the rest of the investigated organs, we do 

not see any significant changes in nanoparticle uptake after macrophage depletion. Male mice that were injected 

with control liposomes saw only a significantly reduced uptake in the spleen of SCARBI-/-. Injected dye seemed to 

follow similar trends in uptake for males injected with clodronate and control liposomes, with exceptions in the 

lungs and kidneys in the clodronate liposome group and white adipose tissue (WAT) in the control group. 

In female mice, there appeared to be a reversal in the uptake of nanoparticles in the clodronate liposome-

treated group. The liver, spleen, heart and kidneys all showed a significantly increased uptake of nanoparticles in 

SCARBI-/- mice (Figure 2.13 – 2.14). This is intriguing because it was initially assumed that lipoproteins would 

bind nanoparticles and deliver them to SCARBI receptors in various organs. One possible reason for this 

difference could be size of the organs. SCARBI-/- mice of both male and female genders have been shown to 

have a tendency of exhibiting splenomegaly;32-33 therefore, the overall uptake per organ should be diminished and 

thus does not explain the significant differences observed in the spleen of female mice that were injected with 

clodronate liposomes. The splenomegaly effect in SCARBI-/- mice however brings up the question of organ size 

dissimilarities between SCARBI-/- and SCARB+/+ mice. 

 An inspection of the weights of the different organs (Figure 2.15 – 2.16) revealed that there were some 

significant differences in the spleen and WAT of the SCARBI-/- and SCARBI+/+ female pair for the control  
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Figure 2.11  Fluorescence Intensity of Organs of Male SCARBI Ex Vivo After Macrophage Depletion with 

Clodronate Liposomes. PSCOOH+dye values are means ± SD (n = 5) except SCARB -/- (n = 3), dye (n = 1), pbs 

(n = 1). + p < 0.05, ++ p < 0.01 as determined by t-test (an F-test for equal and unequal variances was done and 

the corresponding t-test was applied).  

 

 

 
 

Figure 2.12  Fluorescence Intensity of Organs of Male SCARBI Ex Vivo After Injections with Control Liposomes. 

PSCOOH+dye values are means ± SD (n = 5), dye (n = 1), pbs (n = 1) except SCARB -/- (n =2). ++ p < 0.01 as 

determined by t-test (an F-test for equal and unequal variances was done and the corresponding t-test was 

applied). 
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Figure 2.13  Fluorescence Intensity of Organs of Female SCARBI Ex Vivo After Macrophage Depletion with 

Clodronate Liposomes. PSCOOH+dye values are means ± SD (n = 5), dye (n = 1), pbs (n = 1). ++ p < 0.01, +++ 

p < 0.001 as determined by t-test (an F-test for equal and unequal variances was done and the corresponding t-

test was applied) 

 

 

 
 

Figure 2.14  Fluorescence Intensity of Organs of Female SCARBI Ex Vivo After Injections with Control Liposomes. 

PSCOOH+dye values are means ± SD (n = 5), dye (n = 1), pbs (n = 1). + p < 0.05 as determined by t-test (an F-

test for equal and unequal variances was done and the corresponding t-test was applied). 
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Figure 2.15  SCARBI Female Organ Weights. n = 5. + p < 0.05 as determined by t-test (an F-test for equal and 

unequal variances was done and the corresponding t-test was applied) 

 

 

 
 

Figure 2.16  SCARBI Male Organ Weights. n = 5, but wclod SCARBI-/- n = 3. + p < 0.05, +++ p < 0.001 as 

determined by t-test (F-test for equal and unequal variances was done and the corresponding t-test was applied). 
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liposome group. Hence, the size of the spleen and WAT could possibly explain the decreased and increased 

uptake of nanoparticles respectively by female SCARBI-/- mice for the control liposome group. There were not any 

significant differences in all the other pairs for both the clodronate and control liposome group. Consequently, the 

increased nanoparticle uptake in the liver, spleen, heart and kidneys of the clodronate liposome-treated group of 

female mice was not influenced by organ size. No particular trends were observed within either the clodronate 

liposome-treated or control liposome group after the injection of dye. Nonetheless, we do see some trends in the 

biodistribution of the dye across the two groups with the exception of WAT; also pointing to the importance of 

SCARBI receptors in nanoparticle biodistribution.  

For male mice, the differences in liver weights may potentially explain the decreased uptake; but it does 

not explain the drastically increased uptake by the lungs since there were no organ size differences. The SCARBI 

receptors were the likely cause for the increased uptake, and our results also suggests a different mode of 

macrophage depletion in the lungs by intravenously injected clodronate liposomes. Clodronate liposome 

mechanism of action is such that after macrophage engulfment and fusion with lysosome, the phospholipid 

bilayers of clodronate liposomes are broken down by lysosomal enzymes (phospholipases) which then releases 

the clodronate drug.34 The clodronate drug by itself cannot cross the phospholipid bilayers of the liposomes so 

that more drug is released with an increase in the disruption of concentric phospholipid bilayers.35 Since free 

clodronate cannot cross the phospholipid bilayer, it will not easily pass the phospholipid bilayers of cell 

membranes. Moreover, the half-life of free clodronate is extremely short (order of minutes) and will only spend a 

short time in circulation if released from dead macrophages.36 Therefore, there has to be another mechanism by 

which clodronate liposomes deplete macrophages in the lungs since free clodronate are removed from circulation 

rapidly and it would not readily pass through the interstitial blood-gas barrier.  
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Koay and coworkers demonstrated that intravenous injection of 200 µl (5 mg/ml) clodronate liposomes in 

C57BL/6 mice depleted 66% of alveolar macrophages in the bronchial alveolar lavage fluid after 48 hours.37 The 

exact mechanism for this depletion is unclear. Considering the depletion of bone marrow macrophages by 

clodronate liposomes,38 perhaps, the recruitment of bone marrow macrophages enriches alveolar macrophages in 

lungs since macrophage populations in the lungs can arise from bone marrow-derived blood monocytes.39-40 It 

may then be possible that a recruitment of pulmonary intravascular monocytes/macrophages (e.g. due to 

nanoparticle burden) are either indirectly or directly affected by bone marrow macrophage depletion in the SCARBI 

mice.41  

 Disparities in the mode of nanoparticle uptake between male and female mice may be a consequence of 

distinct lipid and lipoprotein metabolism in the two genders. Our findings from measurements of plasma HDL and 

LDL/VLDL cholesterol content in mice treated with clodronate liposomes and control liposomes suggests this 

phenomenon. Plasma HDL cholesterol content was lower in female SCARBI+/+ mice in the clodronate liposome-

treated group while the opposite was observed for male SCARBI+/+ mice (Figure 2.17). This shows the potential 

for macrophage cholesterol homeostasis to be differentially affected in the different genders. The decrease in 

plasma HDL cholesterol displayed by female SCARBI+/+ mice could signify a more selective and involved SCARBI 

receptor-mediated control of cholesterol metabolism, while the increase in plasma HDL cholesterol seen in male 

SCARBI+/+ is not surprising since macrophages as a whole play a role in the regulation of cholesterol uptake. It is 

worth noting that the absence of the SCARBI receptor increased plasma LDL/VLDL cholesterol concentrations. 

This is predictable because SCARBI can function as a multiligand receptor for HDLs, LDLs and VLDLs.42 Research 

by Huby and coworkers also found increased plasma cholesterol levels of VLDLs in SCARBI-/- mice that were fed  

 



www.manaraa.com

59 

 

 
 

Figure 2.17  Plasma HDL and LDL/VLDL Concentration in Male and Female Mice Treated With Clodronate and 

Control Liposomes. For SCARBI+/+, n = 3 for all except females treated with clodronate liposomes n = 4. For 

SCARBI-/-, n = 3, 4, 4 and 5 for males treated with clodronate liposomes, control liposomes; and females with 

clodronate liposomes, control liposomes respectively. + p < 0.05 and ++ p < 0.01 as determined by t-test (an F-

test for equal and unequal variances was done and the corresponding t-test was applied). 
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a high fat diet, and these VLDL particles were rich in apoE.43 Rigotti and coworkers also found similar apoE-rich 

VLDLs in the plasma cholesterol of SCARBI-/- mice that were fed a regular diet.44  

 In the HDL SCARBI-/- group, it is unclear why no significant changes in plasma HDL cholesterol were 

detected in both female and male mice; it may be possible that the absence of macrophages and SCARBI 

receptors is compensated for by other SCARBI-independent pathways or the net flux of plasma HDL cholesterol 

from macrophage uptake and SCARBI-independent pathways. However, differences in plasma HDL cholesterol 

levels in SCARBI+/+ mice treated with clodronate liposomes does suggest different mechanisms for lipid and 

lipoprotein metabolism between male and female mice. A study by Brodeur and coworkers provide more 

validation for genetic differences in lipid and lipoprotein metabolism.45 Their core findings showed that the selective 

uptake of LDL cholesteryl esters in the livers of male and female mice is carried out by both an SCARBI-dependent 

and independent pathway, with females displaying much higher SCARBI-independent activity. Others have also 

noted gender-related differences in cholesterol uptake46-48 and drug metabolism,49-50 and these would have 

significant implications in nanoparticle drug delivery. 

 

2.5  Conclusion 

 

 Lipoproteins bind nanoparticles, but their affinity depends on the composition of the nanomaterial and the 

conformational state of lipoproteins during binding. The release of lipids from lipoproteins could also direct 

binding kinetics and the flux of lipoprotein complexes after lipoprotein fragmentation from contact with the 

nanoparticle surface. Due to the functions of lipoproteins in cholesterol metabolism, intravenously injected 

nanoparticles could bind lipoproteins and be diverted away from intended targets to lipoprotein receptors in the 

body. Gender differences could also affect nanoparticle drug delivery because of the selective uptake of cholesteryl 
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esters by scavenger receptors. Overall, lipoproteins and lipid metabolism have been shown to be important 

contributors to the biodistribution of nanoparticles. These findings should make us become more aware of the 

influence of metabolic status on nanomedicine. 
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A.1  Isothermal Titration Calorimetry: Single Set of Independent Sites Binding Model 

 

In this model, we assume that the nanoparticle (N) contains identical and independent binding sites 

for the ligand (L), and that the ligand binds without any cooperative effects. The reaction under 

consideration can then be written as,  

[𝑁] + [𝐿] ⇌ [𝑁𝐿]                                                                                                                         (𝐴1) 

[𝑁𝑇] = [𝑁𝐿] + [𝑁]                                                                                                                      (𝐴2) 

[𝐿𝑇] = [𝑁𝐿] + [𝐿]                                                                                                                        (𝐴3) 

where [N] and [L] are the concentrations of free nanoparticle and ligand respectively. [NT] and [LT] are 

the total concentrations of nanoparticle and ligand respectively while [NL] is the nanoparticle-ligand 

complex concentration. 

The equilibrium association constant of the interaction of nanoparticle with ligand can be expressed 

as, 

𝐾𝑎 =  
[𝑁𝐿]

[𝑁][𝐿]
=  

𝛩

(1 −  𝛩)[𝐿]
                                                                                                    (𝐴4) 

where Θ is the fractional saturation, that is, the fraction occupancy of ligand binding sites on a 

nanoparticle saturated, and by conservation of mass,  

[𝐿𝑇] = [𝐿] + 𝑛𝛩[𝑁𝑇]                                                                                                                   (𝐴5) 

where n is the number of binding sites and combining equations (4) and (5) gives a quadratic 

equation,  

𝛩2 −  𝛩 (1 +  
1

𝑛𝐾𝑎[𝑁𝑇]
+  

[𝐿𝑇]

𝑛[𝑁𝑇]
) +  

[𝐿𝑇]

𝑛[𝑁𝑇]
=  0                                                                (𝐴6) 

Solving the quadratic equation gives the root of Θ, 
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𝛩 =  
1

2
(1 +  

1

𝑛𝐾𝑎[𝑁𝑇]
+  

[𝐿𝑇]

𝑛[𝑁𝑇]
−  √(1 +

1

𝑛𝐾𝑎[𝑁𝑇]
+  

[𝐿𝑇]

𝑛[𝑁𝑇]
)

2

−  
4[𝐿𝑇]

𝑛[𝑁𝑇]
 )              (𝐴7) 

The total heat of reaction Q in the cell is then given by, 

𝑄 = 𝑛𝛩[𝑁𝑇]𝑉0∆𝐻                                                                                                                        (𝐴8) 

where V0 is the cell volume and ΔH is the molar heat of ligand binding 

Taking into consideration the injection volume ΔVi for injection i, a correction is needed to account for 

this displaced volume. The displaced volume contributes about 50% as much heat as an equivalent 

material in the working volume Vo, such that the heat released from the ith injection is, 

∆𝑄𝑖 = 𝑄𝑖 +
∆𝑉𝑖

𝑉0

(
𝑄𝑖 +  𝑄𝑖−1

2
) −  𝑄𝑖−1 = 𝑄𝑖 (1 +

∆𝑉𝑖

𝑉0

) − 𝑄𝑖−1 (1 −  
∆𝑉𝑖

𝑉0

)                     (𝐴9) 

 

The procedure of fitting the experimental data involves making initial guesses to n, Ka and ΔH. Using 

these initial guesses, the heat ΔQi for each injection is calculated and compared to the measured heat 

values for the corresponding experimental injection. Optimizations to the parameters, n, Ka and ΔH, 

are done with Levenberg-Marquardt methods and further iterations are carried out until no significant 

improvement is observed and the fit parameters converge.  

To calculate change in entropy (ΔS), the reaction isotherm equation (A10) and Gibbs-Helmholtz (A11) are 

combined to solve for ΔS (A12), 

 

∆𝐺 =  −𝑅𝑇 ∙ 𝑙𝑛𝐾𝑎                                                                                                                     (𝐴10) 

 

∆𝐺 =  ∆𝐻 − 𝑇 ∙ ∆𝑆                                                                                                                    (𝐴11) 

 

∆𝑆 = 𝑅 ∙ 𝑙𝑛𝐾𝑎 +  
∆𝐻

𝑇
                                                                                                                (𝐴12) 
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where ΔG is the Gibbs free energy, T is the temperature and R is the universal gas constant. ΔS can then be 

calculated for known values of Ka and ΔH 

 

A.2  Protein Gel Calibration  

 

Several known concentrations of BSA were made and used to calibrate the in-gel standard (1/20X mouse plasma). 

Any protein band on the 1/20X band profile can be used as a relative standard and all major protein bands on the 

1/20X profile can be quantified and serve as in-gel standards for the nanoparticle-protein binding experiments.  

 

 
 

Figure A.2-1  Protein Gel Calibration of 1/20X Plasma with BSA in 10-well Gels. (A) Lane 2- 1/20X plasma, lane 

3- 0.175 µg, lane 4- 0.25 µg, lane 5- 0.5 µg, lane 6- 1 µg, lane 7- 2 µg, lane 8- 4 µg, lane 9- 8 µg. (B) Lane 2- 

1/20X plasma, lane 4- 0.15 µg, lane 6- 0.125 µg, lane 7- 0.1 µg, lane 8- 0.05 µg, lane 9- 0.075 µg 
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Figure A.2-2  Protein Gel Calibration of 1/20X Plasma with BSA in 15-well Gels. (A) and (B) Lane 1- 0.05 µg, lane 

2- 1/20X plasma, lane 3- 0.125 µg, lane 4- 0.15 µg, lane 5- 0.175 µg, lane 6- 0.25 µg, lane 7- 0.5 µg, lane 9- 1 

µg, lane 10- 0.1 µg, lane 11- 2 µg, lane 12- 0.075 µg, lane 13- 8 µg, lane 15- 4 µg.  

 

 

A.3  Representative Protein Gels for the Binding of Nanoparticles to Plasma Proteins 

 

 

 
 

Figure A.3-1  Protein Gels of PSCOOH Binding to 1/5X – 1/2X plasma. (A) 2- 1/20X standard, 4- 1/3X plasma, 6- 

1/3X plasma + PSCOOH, 8- 1/2X plasma, 10- 1/2X + PSCOOH, 12- 1/5X plasma, 14- 1/5X plasma + PSCOOH. 

Lane 4 – 14, supernatant. (B) Same as (A) except lane 4 – 14 is pellet. 
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Figure A.3-2  Protein Gels of PSCOOH Binding to 100X – 1/20X plasma. (A) 2- 1/20X standard, 3- 1/50X, 4- 

1/50X + PSCOOH, 6- 1/20X  + PSCOOH, 7- 1/20X, 8- 1/100X, 9- 1/100X + PSCOOH. Lane 3 – 9, supernatant. 

(B) Same as (A) except lane 3 – 9 is pellet  

 

 

 
 

Figure A.3-3  Protein Gels of PSCOOH Binding to 100X – 1/60X plasma. (A) 2- 1/20X standard, 3- 1/100X + 

PSCOOH, 4- 1/100X, 5- 1/70X, 6- 1/70X + PSCOOH, 8- 1/60X, 9- 1/60X + PSCOOH. Lane 3 – 9, supernatant. 

(B) 2- 1/20X standard, 3- 1/100X, 4- 1/100X + PSCOOH, 6- 1/70X + PSCOOH, 7- 1/70X, 8- 1/60X, 9- 1/60X + 

PSCOOH. Lane 3 – 9, pellet.   
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A.4  Size Distribution of PSCOOH Nanoparticles 

 

 

 
 

Figure A.4-1  Top Panel: PSCOOH. Bottom Panel: PSCOOH-DiR 
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A.5  CD Profile of the Structural Changes of mHDL in PSNH2 Nanoparticles 

 

 

 
 

Figure A.5-1  Secondary Structural Changes Of mHDL Incubated With PSNH2 Nanoparticles. 
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A.6  UV-VIS Absorbance Profile Showing Protein Depletion and Protein Gel Displaying the Plateau of 

ApoA-I 

 

 

 
 

Figure A.6-1  Absorbance Spectra Showing Complete Nanoparticle Pelletization After Ultracentrifugation. Left 

Panel: Depicting absorbance spectra without ultracentrifugation. Right Panel: Depicting the supernatant absorbance 

spectra after ultracentrifugation of the PSNH2 and 1/20X plasma suspensions 

 

 

 
 

Figure A.6-2  Protein Gel Showing the ApoA-I Bands from the Supernatant After Ultracentrifugation 
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A.7  Protein Gels from mHDL Isolation by Anion Exchange Chromatography 

 

 

 
 

Figure A.7-1  Protein Gels Depicting the Elution of One or More Distinct Plasma Proteins Prior to Changing the 

Salt Gradient Scheme. Left Panel: a-b, fraction 44 – 46; d – m, fraction 51-60. Right Panel: a-m, fraction 61-74. 

 

 

A.8  Gel Filtration Chromatography Calibration Curve 

 

 

 
 

Figure A.8-1  Calibration Curve for Estimating the Molecular Weights of mHDL and hHDL 
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A.9  PCR Genotyping with Genomic DNA from Mice Tails  

 

 

 
 

Figure A.9-1 SCARBItm1kri Genotyping with PCR. Wild-type represent one 262 bp band, mutant represents one 140 

bp band, while heterozygous represents both 140 bp and 262 bp bands. 

 

 

A.10  Body Weight and Organ Weight of Mice 

 

 

 
 

Figure A.10-1  Body weight of male and female SCARBI+/+ and SCARB-/- mice 
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Figure A.10-2  Organ weight differences between male and female mice injected with either clodronate liposomes 

or control liposomes. + p < 0.05, ++ p < 0.01 as determined by the t-test (an F-test for equal and unequal 

variances was done and the corresponding t-test was applied). n.s. p. denotes no significant difference between all 

the male-female pairs within a clodronate liposome or control liposome group. 
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CHAPTER III 

The Localization of Soft Nanoparticles to the Liver and Spleen is Significantly 

Reduced in Obese Mice 
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3.1  Abstract 

 

Due to the prevalence of overweight and obese individuals in the United States being 70% and 30% 

respectively among adults, it is likely that many prospective patients that will be administered nanotherapies will 

have additional metabolic complications. Yet, studies on the distribution of nanoparticles and their efficacy occur 

mostly in lean rodents. Here, we determined the biodistribution of model nanoparticles – filomicelles – as a 

function of mouse diet and weight utilizing three strains: C57BL/6J, KK-Ay, and ob/ob. C57BL/6J mice are largely 

resistant to significant weight gain, but KK-Ay and ob/ob mice become obese on a high-fat diet. I found that there 

was a significant drop in the accumulation of nanoparticles in the livers and spleens of KK-Ay and ob/ob mice as 

their weights increased. Interestingly, almost no nanoparticles localized to the white adipose tissue (WAT) of any of 

the mice. These results have significant implications for patients with altered metabolic states. 

 

3.2  Introduction 

 

The biodistribution of a nanoparticle in model mammals such as mice provides clues as to the future 

promise of nanoparticles in treating human diseases. However, the vast majority of experiments that determine the 

biodistribution of nanoparticles take place after administration to metabolically healthy rodents.1 This methodology 

has provided a wealth of insight into mammalian response to nanoparticles. However, the vast majority of patients 

that will potentially be administered nanoparticles in the clinic will be overweight to obese and have widely varying 

metabolic conditions. These imbalances could greatly affect nanoparticle biodistribution and future efficacy.2-3  

Here, I determined the biodistribution of cylindrical poly-ethylene-oxide–block-poly-butadiene PEO-b-

PBD filomicelles in three mouse strains: C57BL/6J, KK-Ay, and ob/ob. C57BL/6J (wild-type) mice are not an ideal 

model for diet-induced obesity, thus the need for the KK-Ay and ob/ob strains. However, I was able to maintain the 
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weights of the KK-Ay and ob/ob mice at lean C57BL/6J levels (~25-30 g) by limiting their diets to 4 grams of low-

fat feed (LFD) per mouse per day. I determined that nanoparticle localization to the liver and the spleen decreased 

by up to factors of ~4 and ~10, respectively, from the lean (~30 grams) to the heaviest (~55-60 g) KK-Ay and 

ob/ob mice. Nanoparticle signal in WAT was just above background, indicating that it is not a major sink. This also 

indicates that any adipose tissue macrophages (ATMs) had a limited role in nanoparticle clearance. My results 

show that mammalian diet and weight play crucial roles in the biodistribution of model nanoparticles. 

 

3.3  Materials and Methods 

 

3.3.1  Synthesis of Diblock Copolymers for Filomicelles 
 

Poly-ethylene-oxide-block-poly-butadiene (PEO-b-PBD) copolymers were synthesized following the techniques of 

Hillmyer and Bates.4 s-BuLi (1.4 M in cyclohexane; Sigma-Aldrich #195596) and n-BuLi (2.0 M in cyclohexane; 

Sigma-Aldrich #302120) were diluted with hexane under vacuum. Potassium naphthalenide (K-Naph) was 

prepared with naphthalene and potassium in THF. 1,3-butadiene (BD; Sigma-Aldrich #695580) was distilled two 

times over n-BuLi sequentially and diluted with two-fold excess of THF. Ethylene oxide (EO; Sigma-Aldrich 

#387614) was distilled over n-BuLi two times sequentially and distilled again to each ampoule. Tetrahydrofuran 

(THF; Fisher #T397-1) was distilled under N2 after refluxing with sodium for 5 h and over K-Naph under vacuum. 

All initiators and monomers were stored at -30 °C in ampoules equipped with break-seals. 

The polymer number-average molecular weight and polydispersity index were determined using size exclusion 

chromatography (SEC) equipped with a Knauer’s K-501 HPLC pump, K-2301 RI detector, K-2501 UV detector, 

and with a set of two columns; Polymer Standards Services, SDV-gel, 60 cm length (5 mm) 100 Å and a linear 

102–106 Å. THF with toluene as a solvent flow marker, was used as an eluent at a flow rate of 1.0 mL min-1, and 
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the SEC was calibrated using polystyrene (PS) standards obtained from Pressure Chemicals (Pittsburgh, USA). 

The 1H-NMR spectra (JEOL JNMLA300WB) were measured using CDCl3 as the solvent. 

The anionic polymerization of butadiene (BD) was performed under high-vacuum conditions (10-6 Torr) in sealed 

glass apparatus equipped with break-seals. The polymerization reactors was washed with the initiator solutions of 

K-Naph in THF after sealed off from the vacuum line. The initiator solution of s-BuLi in hexane (1.22 mmol, 

0.61M) was transferred into the reactor and stabilized at -60 °C for 5 min. The monomer solution of butadiene in 

THF (3.2g, 59.2 mmol, 1.2 M) was introduced quickly into the initiator solution at -60 °C. The solution turned 

deep yellow, which indicated successful initiation. The polymerization was carried out at -60 °C and the color of 

polymeric solution became light orange. After 6 h, ethylene oxide (1.0 ml, 20 mmol) was added at -60 °C and the 

reaction became colorless rapidly. The end-capping reaction of living polybutadiene with EO was carried out with 

stirring at room temperature overnight. The reaction was terminated with acidic methanol. The hydroxyl-end 

capping polybutadiene (PBD-OH) was precipitated in a large amount of methanol and dried in vacuum oven for 3 

days. The polymer (3.23 g) was obtained with 99.5 % of yield and characterized using 1H-NMR and SEC. 

Molecular weight from SEC is 2,730 g/mol (polydispersity index: 1.06). 1H-NMR spectra (CDCl3, 500 MHz),  

(ppm): 5.6-5.2 (CH2-CH=CH-CH2- and CH2=CH-CH-), 5.0-4.8 (CH2=CH-CH-), 3.6 (-CH2-OH), 2.3-1.8 (CH2-

CH=CH-CH2-and CH2=CH-CH-), 1.5-1.0 (CH2=CH-CH-CH2-), 0.85(-CH3 from initiator).  

The viscous polymer of PBD-OH (3.0 g, 55.5 mmol) was dried under reduced pressure for 3 days and the 

solution of PBD-OH in THF (1.0 M) was prepared by distilling THF over K-Naph under vacuum. The solution of 

PBD-OH was titrated by adding the deep green solution of potassium naphthalenide in THF drop by drop until a 

light green solution persisted for 1 h. The monomer of EO (3.4 ml, 68.2 mmol) was introduced to the solution. 

The polymerization in THF was heated to 60 °C with stirring for 5 days. The acidic methanol was added to the 
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solution of block copolymer PBD-b-PEO. The THF and methanol was evaporated completely. PBD-b-PEO was 

redissolved in chloroform and extracted with deionized water three times. After evaporation of chloroform, the 

block copolymer of PBD-b-PEO was dried by heating to 40 °C for 2 days in vacuum drying oven. The pure block 

copolymer of PBD-b-PEO (5.94 g) was obtained with 99 % of yield and characterized using 1H-NMR and SEC. 

Molecular weight from SEC is 5,380 g/mol (polydispersity index: 1.09). 1H-NMR spectra (CDCl3, 500 MHz),  

(ppm): 5.6-5.2 (CH2-CH=CH-CH2- and CH2=CH-CH-), 4.9-4.7 (m, CH2=CH-CH-), 3.7-3.4(-O-CH2-CH2-O-), 2.2-

1.8 (CH2-CH=CH-CH2-and CH2=CH-CH-), 1.4-0.9 (CH2=CH-CH-CH2-), 0.6(-CH3 from initiator).  

 

3.3.2  Nanoparticle Preparation 
 

Filomicelles were formed from PEO-b-PBD copolymers using film rehydration with phosphate buffered saline 

(PBS) as the aqueous buffer as described previously.5 Prior to injection, copolymers that did not form filomicelles 

were pelleted at 25°C for 15 minutes at 15,000 x g. The upper phase containing the dispersed filomicelles was 

reserved for injection, with the amount of copolymer in the pellet being minimal. High-aspect-ratio nanoparticles 

such as filomicelles should not in general be forced through filters as many of the nanoparticles will be lost.6 All 

nanoparticles were loaded with near-infrared (NIR) dye for imaging Life Technologies, #D-12731.5 The dye 

partitions into the hydrophobic interiors of the nanoparticles and does not leak in vivo.5 

 

3.3.3  Mice 
 

All mouse experiments were approved by the University of Tennessee’s Institutional Animal Care and Use 

Committee. I used C57BL/6J (Jackson Laboratories; #000664), KK-Ay (Jackson Laboratories; #002468), and 

ob/ob mice (Jackson Laboratories; #000632). I controlled their weights by the amount and duration that they were 
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on either low-fat (Research Diets, #D12450B) or high-fat diets (Research Diets, #D12492). All weights were 

recorded before both injection and 24 hours later before euthanization. No appreciable differences were observed. 

 

3.3.4  Imaging 
 

Mice were euthanized by cervical dislocation under isoflurane anesthesia and the organs and white adipose tissue 

were immediately harvested and imaged for NIR signal in the IVIS Lumina system 

 

3.4  Results and Discussion 

 

I wished to determine filomicelle biodistributions in mice whose weights were controlled by diet and 

genetics. I used C57BL/6J mice as a model system for wild-type mice. I used KK-Ay and ob/ob mice as two 

models of obesity. Heterozygote KK-Ay mice become obese after a few weeks on a high fat diet (HFD).7 This is due 

to fat cell hypertrophy potentially caused by a reduction in hypothalamic norepinephrine and dopamine.7 

Homozygous ob/ob mice lack leptin a hormone secreted by adipocytes that acts on hypothalamic neurons to 

regulate energy and glucose balance.8 The weights of the three strains of mice were controlled by diet, the duration 

of time on that diet, and ranged from ~25 to ~60 grams (Figure 3.1A). The leanest mice in each of the three strains 

had a restricted low-fat diet (LFD) of 4 grams/day per mouse. After each population of mice had reached the 

desired weight, three mice in each set were tail-vein injected with 100 µl of ~10 mg/ml filomicelles carrying NIR 

dye (filomicelles-NIR) in PBS.5 We also injected one additional mouse with the equivalent amount of NIR dye in 

PBS, and one additional mouse with PBS. 48 hours after injection the mice were humanely euthanized and the 

liver, spleen, lungs, kidneys, WAT, and heart were immediately harvested along with the blood, which was 

separated into cells and plasma. I subtracted the intensity of the organs exhumed from the mice that were injected 
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with PBS from the intensity of the organs exhumed from the mice that were injected with filomicelles-NIR. All 

organs were washed with cold PBS and were immediately imaged for NIR signal using the IVIS Lumina system. 

There was a significant drop in filomicelles-NIR signal across the three strains as a function of liver weight 

(Figure 3.1B,C). This was especially evident between KK-Ay and ob/ob mice that were on a restricted LFD diet (4 

grams/day) versus mice with the same genetic backgrounds that were on an unlimited HFD (Figure 3.1C). There 

was a similar trend in the filomicelles-NIR signal in the spleens in these same mice (Figure 3.2A,B). There was a 

striking difference in the localization of filomicelles-NIR to the liver and the spleen versus WAT across all of our 

mouse models. Although mice on a HFD can have significant amounts of WAT (Figure 3.2C), filomicelles-NIR do 

not localize there (Figure 3.2D,E). Only mice that are on a LFD have NIR signals in their WAT that are above the 

background signal (Figure 3.2D,E). There were no major differences in the nanoparticle-NIR signals in the lungs, 

heart, and kidneys among any of the mice (data not shown). 

The accumulation of nanoparticles in the liver and spleen decreased in obese versus lean mice and this 

may be due to the activity of macrophages. Macrophage populations are heterogeneous;9 M1 macrophages are 

classically activated as the result of the overproduction of proinflammatory cytokines whereas M2 macrophages 

express immunosuppressive factors that promote tissue remodeling and help resolve inflammation.10 However, 

recent work has shown that culturing macrophages in an environment of glucose, insulin, and palmitate - which 

emulates the metabolic condition - result in a unique phenotype called “metabolic activation”.11 This agrees with 

recent findings in the literature where it was shown that migrating macrophages buffer the rest of the body from 

neutral lipids / fatty acids released from WAT.12-13 It is possible that the exposure of macrophages to high levels of 

fatty acids inhibits their ability to engulf nanoparticles and foreign objects in general. This could also explain the 
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modest activity of Kupffer cells in enlarged livers and the reduction in filomicelle-NIR localization in the spleen in 

ob/ob mice if neutral lipids are also reaching those areas of the body in obese individuals. 

Nanoparticles accumulate in WAT as a function of WAT mass, which for obese individuals can account for 

a large fraction of their total weight: in the ob/ob mice, WAT weight was ~¼ of their total weight. However, based 

on the NIR intensity of the pixels in the WAT images of obese mice, this appears to be a passive and not an active 

effect. The targeting of nanoparticles to WAT for obesity treatments has been of recent interest,14-16 but a thorough 

study of nanoparticle distribution as a function of patient weight is – to our knowledge – lacking.  

 

3.5  Conclusion 

 

Here, I determined the biodistribution of soft near-infrared (NIR)-carrying filomicelles as a function of 

patient weight and metabolic state using diet-induced obese mice and mice homozygous null for leptin, an 

adipokine that regulates appetite.8 Filomicelles were chosen as model nanoparticles because of their PEG brush, 

long circulation times, and their effectiveness in targeting and shrinking tumor xenographs in mice.5, 17 With these 

properties, I propose that this system be considered as an effective baseline to quantify general nanoparticle 

biodistribution as a function of patient metabolic state. Chemical and physical modifications that model the 

properties of specialized nanoparticles of interest can be easily made.18  

To provide broad insight into the effects of diet and weight on nanoparticle biodistribution, I used four sets 

of mice ranging from lean (27 ± 1 g) to obese (60 ± 2 g). In lean mice, the liver, spleen, lungs, kidney, and heart 

showed NIR signals in decreasing order with the liver and spleen dominating as expected.17 Surprisingly, when the 

weight of the mice was increased through a HFD leading to significant WAT mass, the NIR signal increased in 

WAT as a linear function of its mass. Even in mice with moderate weights (20% heavier than lean mice), the signal 
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of the combined WAT was comparable to that of the spleen. In ob/ob mice, the combined NIR intensity of the 

WAT was more than twice that of the spleen. These results show that obesity can have a profound influence on the 

biodistribution of bio-compatible circulating nanoparticles. 
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Figure 3.1.  Biodistribution of filomicelles in mice as a function of diet, weight, and genetics. (A) Plot of the weights 

of mouse livers as a function of mouse weight at the time of injection of filomicelles carrying NIR dye (filomicelles-

NIR). Open symbols represent mice that were fed a low fat diet (LFD). Closed symbols represent mice that were 

fed a high fat diet (HFD). Mice that are represented by the open symbols in the box were restricted to 4 g/d of 

LFD. (B) Fluorescent images of livers from the mice that were injected with filomicelles-NIR. (C) Fluorescent 

intensity of the livers shown in (B). Each data point represents three livers. (D) Plot of the weights of mouse 

spleens as a function of mouse weight at the time of injection of filomicelles-NIR. Scale bars are 10 mm. 
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Figure 3.2  (A) Fluorescent images of spleens from the mice that were injected with filomicelles-NIR. (B) 

Fluorescent intensity of the spleens shown in (A). Each data point represents three spleens. (C) Plot of the weights 

of mouse WAT as a function of mouse weight at the time of injection of filomicelles-NIR. (D) Fluorescent images of 

the WAT from the mice that were injected with filomicelles-NIR. (E) Fluorescent intensity of the WAT shown in (D). 

Each data point represents the WAT from three separate mice. Scale bars are 10 mm. 
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CHAPTER IV 

Incorporation of Obesity and B-cell Lymphoma in a Mouse Model 
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4.1  Abstract 

 

Our novel crossing of Eµ-myc and ob/ob, done with the help of Sarah Kauffman, provided useful for 

understanding some of the effects of diet-induced obesity on the proliferative nature of B-cell malignancies. We 

show here that diet has the capability of causing significant changes to lymph node and splenic architecture. High 

fat-diet consumption for prolonged periods was shown to cause lymphoid hyperplasia cholesterol granuloma and 

foamy macrophages in lymph nodes of ob/ob mice. When ob/ob mice were placed on a high-fat diet and 

administered paclitaxel, there was still an identification of marked follicular lymphoid hyperplasia in their spleens. 

This is particularly interesting since paclitaxel is generally known to reduce lymphocyte numbers. Male ob/OB x 

Eµ-myc that were fed a high-fat diet also had a worse diagnosis than their female counterparts that were fed a low-

fat diet. Altogether, our studies point to the potential of obesity status to influence B-cell lymphoma. 

 

4.2  Introduction 

 

Non-Hodgkin’s lymphoma (NHL) constitutes a heterogenous group of lymphoproliferative malignancies 

with approximately 85% arising from B-cell lymphocytes while the remainder are derived from T-cells and natural 

killer cells.1 These malignant lymphomas generally emerge from cancerous lymphocytes in the lymph nodes but 

can develop anywhere lymph tissues are found in the body.1 Based on histopathological features, the lymphomas 

can be broadly categorized as indolent or aggressive. Indolent lymphomas are usually incurable and tend to less 

responsive to each successive treatment of chemotherapy over the history of the disease.2 On the other hand, 

aggressive lymphomas are typically characterized by a rapid symptom onset and if the disease is left untreated, 

death could occur fairly quickly although most cases of aggressive lymphoma can be cured if chemotherapy is 

initiated in a timely manner.2 
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Treatment of NHL can often be complicated by the presence of underlying conditions3-5 and 

understanding the impact of such comorbidities on lymphoma therapy is important in determining potential 

preventive regimens and therapeutic strategies. Obesity, in particular, is one of such conditions that is highly 

prevalent in the United States and most of the Western world;6 therefore, it is possible that overweight and obese 

patients would often be encountered for lymphoma treatment. Although obesity is a well-known risk factor for 

developing NHL,7-8 there is scant knowledge about the impact of obesity on the aggressiveness or overall survival 

in lymphoma cases. Most studies in literature are non-experimental epidemiological studies and their results are 

conflicting.9-16 Some researchers found a positive association between overweight or obese patients and survival 

while others found a deleterious association or none at all. 

Body mass index (BMI) was used in these epidemiological studies as a measure of body fat and patients 

were stratified into various groups depending on their BMI. Since there were no quantifiable indicators for obesity-

related disease aggressiveness, overall survival was considered as an alternate measure for the impact of obesity 

in the NHL cases. In summary, diffuse large B-cell lymphoma (DLBCL) was the predominant aggressive NHL 

subtype examined and obesity-related impact on overall survival was inconclusive since these studies lacked a 

consistent objective grouping measure for body fat, and other influential factors such as established NHL treatment 

regimens or age, gender and people groups were not comparable across all studies. Although the non-

experimental epidemiological studies were inconclusive, the results do show that obesity is an important factor that 

needs to be considered in the treatment and survival of lymphoma patients. To this end, experimental studies (e.g. 

animal models of B-cell lymphoma and obesity) that demonstrate how obesity affects NHL prognosis will be 

essential. 
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While there is limited experimental information on how obesity impacts NHL, a couple studies provide 

some insight as to the relevance of body fat in NHL cases. Huang and coworkers utilized C57BL6/J and 

peroxisome proliferator-activated receptor-α deficient (PPAR-α -/-) mice bearing B-cell tumors induced by 

Bcr/Abl-transformed B-cells to study the effect of tumor development on lipid mobilization and distribution.17 They 

found that it could be possible for the B-cell tumors to elicit lipid mobilization from white adipose tissue to the liver, 

with subsequent increased export of serum lipids in the form of very low density lipoprotein (VLDL)/low density 

lipoprotein (LDL) to further promote tumor growth. Results of their investigations also showed that fenofibrate, a 

lipid-lowering drug and PPAR-α agonist, altered hepatic lipid metabolism and suppressed tumor growth. In a 

different study by the same group, they used VLDL production-deficient mice, carboxylesterase 3/triacylglycerol 

hydrolase -/- (Ces3/Tgh -/-), to further elucidate the mechanism by which tumor progression was dependent on 

tumor-induced hyperlipidemia.18 They discovered that Ces3/Tgh -/- mice were resistant to tumor-induced hepatic 

LDL receptor (LDLR) downregulation and hyperlipidemia which resulted in significantly diminished growth of 

Bcr/Abl-transformed B-cell tumors.  

Other researchers’ works have also pointed to the potential for altered lipid metabolism to impact B-cell 

lymphoma growth,19-21 however, more studies need to be done to further assess the impact of body fat or obesity 

on B-cell lymphoma cases. In light of our current limited knowledge of B-cell lymphoma metabolism, we 

proposed to incorporate obesity and B-cell lymphoma in a single mouse model to better understand the effects of 

obesity on the growth of B-cell tumors and ultimately overall survival.  
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4.3  Materials and Methods 

 

All animal experiments were conducted using institutionally approved protocols by the Institutional Animal 

Care and Use Committee (IACUC) at the University of Tennessee, Knoxville. Veterinarians (MMF & KN) at the 

University of Tennessee, Knoxville were blinded for all submitted samples. 

 

4.3.1  Breeding and Injections 
 

Heterozygous obese (ob/OB; stock# 000632, JAX Laboratory, United States) female mice were bred with male 

mice that develop B-cell lymphomas (OB/OB B6.Cg-Tg(IghMyc)22Bri/J; stock# 00278, JAX Laboratory, United 

States). Mice with the desired genotypes were separated into two groups; one given a high-fat diet (D12492, 

Research Diets, Inc., United States) to induce obesity and another on a low-fat diet (D12450B, Research Diets, 

Inc., United States) to serve as a control. After confirmation of obese or B-cell lymphoma status, mice were 

intravenously administered either 100 µl 1X PBS or 5 mg/kg paclitaxel (PTX) drug five to six days before blood 

collection.  

 

4.3.2  PCR Screening for Mice Genotype – LepOb 
 

Mouse tail snips were performed, and genomic DNA extractions were carried out according to manufacturer’s 

protocol using DirectAmp tissue genomic DNA amplification kit (Denville Scientific, United States). The following 

stock primers were used as recommended by JAX Laboratory for Lepob: oIMR1151 common,5’-TGT CCA AGA 

TGG ACC AGA CTC-3’; and oIMR1152 common, 5’-ACT GGT CTG AGG CAG GGA GCA-3’. Stock primers were 

diluted to 100 pmoles/µl and a fresh primer mix was made by diluting all primers to 10 pmoles/µl. The recipe for 

PCR amplification consisted of 4 µl of DNA extract, 1 µl of primer mix, 10 µl of Hot-Start Taq mastermix (Denville 
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Scientific, United States) and 5 µl of water. PCR was carried out with an Eppendorf Mastercycler X50a (Eppendorf, 

Germany) under the following cycling conditions: 94°C for 3 min, (94°C for 30 s, 62°C for 1 min, 72°C for 45 s) 

35 cycles, 72°C for 2 min and hold at 4°C. Following the PCR run, the PCR products were digested with Thermo 

Scientific FastDigest Ddel (HPyF3I) restriction enzyme kit. Digested products were separated on a 3% agarose gel. 

Products that were wild-type, heterozygous, and mutant had the following band sizes: 155 bp; 155 bp, 100 bp and 

55 bp; and 55 bp respectively. 

 

4.3.3  PCR Screening for Mice Genotype – Eμ-myc 
 

Genomic DNA extractions from mouse tails were done with the same kit as above. The same concentrations for 

stock primers and primer mixes were also used. The following stock primers were utilized as recommended by 

JAX Laboratory: 14377 transgene forward, 5’-TTA GAC GTC AGG TGG CAC TT-3’; 14378 transgene reverse, 5’-

TGA GCA AAA ACA GGA AGG CA-3’; oIMR7338 internal positive control forward, 5’-CTA GGC CAC AGA ATT 

GAA AGA TCT-3’; and oIMR7339 internal positive control reverse 5’-GTA GGT GGA AAT TCT AGC ATC ATC C-

3’. The PCR recipe is as follows: 4 µl of DNA extract, 0.7 µl of primer mix, 10 µl of Hot-Start Taq mastermix and 

5.3 µl of water. PCR amplification was carried out with an Eppendorf Mastercycler X50a using the following cycling 

conditions: 94°C for 4 min, (94°C for 20 s, 65°C for 20 s, 68°C for 25 s) 10 cycles, (94°C for 20 s, 60°C for 20 

s, 72°C for 20 s) 28 cycles, 72°C for 2 min and hold at 4°C. PCR Products were separated on a 3% agarose gel 

with 210 bp and 324 bp corresponding to the transgene and the internal positive control respectively. 
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4.3.4  Blood Collection 
 

All mice were anaesthetized with isoflurane (Zoetis Inc., Kalamazoo, MI) using the open-drop method prior to 

blood collection. Whole blood was collected from each mouse via jugular vein puncture with a 20G needle. Blood 

was collected and placed in a dipotassium ethylenediaminetetraacetic acid (K2EDTA) tube (BD Microtainer, Becton, 

Dickinson and Company, Franklin Lakes, NJ), followed by tube inversion several times to mix the blood. All 

samples were kept at 4°C prior to hematology analysis to be performed within 24 hours. 

 

4.3.5  Hematology 

 

A complete blood count (CBC) was performed using an automated hematology analyzer (Vet abc, Scil Animal 

Care, Gurnee, IL).  Additionally, a blood smear was prepared and stained (Aerospray 7120, Wescor, Logan, UT) 

using routine clinical laboratory methods, and reviewed by a board-certified veterinary clinical pathologist (MMF).  

 

4.3.6  Tissue Fixation and Evaluation 
 

At necropsy, the tissues were collected, fixed in 10% neutral buffered formalin. After 24 hours of fixation, the 

tissues underwent routine processing, paraffin-embedding, sectioning, hematoxylin and eosin staining, and 

microscopic evaluation by a board-certified veterinary pathologist (KN). 

 

4.4  Results and Discussion 

 

Mice were injected according to the schedule in Table 4.1 after confirmation of obesity and/or B-cell 

lymphoma status (Appendix C.1). Their corresponding weights can also be seen in Table 4.2. Samples for blood 

collection revealed that mice that were found to have the Eµ-myc transgene, as determined by PCR genotyping, 

also had increased white blood cell count when compared on average to the rest of the non-transgenic mice 
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(Table 4.3 and Figure 4.1). Cell volume and morphology from healthy and Eµ-myc transgenic mice also provided 

more evidence of hematologic malignancy. Micrographs of blood smear samples from non-transgenic and Eµ-

myc transgenic mice illustrated that mice with the transgene exhibited larger cells than those from non-transgenic 

mice, which is consistent with identification of malignant c-myc lymphocytes (Figure 4.2).22 Mice with the Eµ-myc 

transgene (PD5, C35, C6; Table 4.1, Figure 4.2) were categorized as having lymphoid leukemia or stage V 

lymphoma based on the hematology results. 

 These findings were also confirmed from a histological examination of spleen and lymph node tissue 

samples (Table 4.4, Figure 4.3 – 4.5). We can see from Figure 4.5 that the lymph node tumor of the ob/OB x Eµ-

myc male (C35) mouse did not have any remaining lymph node architecture; furthermore, cells were extending 

beyond the lymph node capsule. Cells going beyond the lymph node capsule would indicate that the disease 

could metastasize.23-24 In Figure 4.5C we also clearly see the presence of monomorphic populations of large 

lymphocytes and frequent mitosis occurring. Frequent clusters of apoptotic cells were also observed. All of this 

indicates a rapid proliferation and death of cells which are characteristic of cancerous cell populations.25-26  

Diagnosis of the spleen (C35) indicated marked follicular lymphoid hyperplasia (MFLH) and 

extramedullary hematopoiesis (MEMH). Follicular hyperplasia is a typical cause of lymph node enlargement mainly 

due to an increase in the number of B-cells that become larger and proliferate rapidly.27 However, follicular 

hyperplasia diagnosis can be benign as opposed to follicular lymphoma which is a common malignant NHL.28 

MEMH may indicate an infiltration of neoplastic cells,29 as seen by the large spleen (Table 4.5), and it could also 

signify a steady supply of monocytes to the tumor site.30 However, EMH on its own as an assessment of 

lymphoma pathologies by extramedullary hematopoiesis can be rather obscure and has often been relegated as an 

epiphenomenon.31 Therefore, a complete evaluation of other potential factors as we have determined, is necessary 
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for a clear diagnosis. Altogether, the data and diagnosis are in sync and undoubtedly identify B-cell lymphoma in 

ob/OB x Eµ-myc mice. 

 Comparing the ob/OB x Eµ-myc female (C36) mouse that displayed mild follicular lymphoid hyperplasia 

(MIFLH) with the male mouse (C35) that was diagnosed with MFLH in the spleen, we see that apart from gender 

differences, the other main factor that distinguishes the two are their diets. The female was fed a low-fat diet while 

the male was fed a high-fat diet, which may account for differences in their diagnosis. When the ob/OB x Eµ-myc 

female is compared to her ob/OB (C38) counterpart, their diagnosis for follicular lymphoid hyperplasia is similar 

but EMH for ob/OB (C38) was considered mild. The identification of MFLH in spleen was also determined for all 

mice fed a high-fat diet regardless of gender, weight or differences in obesity and Eµ-myc status. This agrees with 

other research studies that have shown an increase in splenic hyperplasia as a result of consuming high-fat 

diets.32-35  

 Lymphoid cholesterol granuloma in the lymph nodes of female ob/ob (C28 and C29) mice is indicative of 

their obesity status and intake of high-fat diets. These mice were placed on a high-fat diet for 8 weeks and had an 

average weight of about 60 g. The presence of foamy macrophages in the lymph node (Figure 4.4) is also a 

prominent feature of these cells that can result from consuming diets high in fat.36-37 In the lymph node of this 

female ob/ob (C28) mouse, even though there was MFLH, the lymph node architecture was retained as opposed 

to a distortion of lymph node architecture in the male ob/OB x Eµ-myc mouse (C35). Germinal centers in the 

lymph node of the female ob/ob (C28) mouse also displayed larger B-cells with smaller surrounding lymphocytes, 

but with rare mitotic and apoptotic cell events. The spleen of ob/ob female mouse (Figure 4.3) showed an 

expansion of periarteriolar lymphoid sheath from lymphocyte hyperplasia and the red pulp displayed EMH. This is 

interesting since this mouse (C28) was injected with PTX which is well-known to deplete lymphocyte numbers in 
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tissues and has been found by researchers to cause mouse splenic lymphocytes to be hyporesponsive.38-40 

However, there could be lymphocyte repopulation following paclitaxel therapy (i.e. after gaps in treatment) 

potentially due to B-cell diversity and/or a recovering immune system.41-42 Although the exact mechanisms are 

unclear, the combined treatments of high-fat diet and 5 mg/kg PTX induced lymphoid hyperplasia in ob/ob female 

mouse. The identification of EMH could also be as a result of PTX and/or a high-fat diet since EMH is a known 

occurrence following administration paclitaxel and other chemotherapeutic agents.43-44  

The combined results from our tests should aid in guiding future experiments. One of the major areas to 

explore would be an introduction of flow cytometry methods that can differentiate between B-cell subpopulations 

since the automated WBC count makes no distinction between normal and malignant populations. This would also 

help in resolving subpopulations that are like to be hyporeactive (or hyperactive) after treatment with any 

chemotherapeutic drugs. 

 

4.5  Conclusion 

 

 Overall, our findings demonstrate that there is the potential for obesity status and/or a diet high in fat to 

influence disease progression in B-cell malignancies. We propose that for a more definitive assessment of B-cell 

lymphoma pathologies, more tests would need to be incorporated to elucidate the mechanisms surrounding the 

relationship between obesity status and/or a high-fat diet on B-cell lymphoma.  
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Table 4.1  Experimental Outline of Injection Schedule, Blood Collection and Diet Placement 

 

Sample ID Gender Genotype 

**Time of Diet 

Placement / 

duration 

Injection 
Blood collection 

(BC) 

PD1 – PD3 M ob/ob Tg- 
HFD, 15 wks post 

DOB / 3 wks 
-- 

3 wks post HFD 

placement 

PD4 F ob/ob Tg- 
HFD, 15 wks post 

DOB / 3 wks 
-- 

3 wks post HFD 

placement 

PD5* M ob/ob Tg+ 
HFD, 16 wks post 

DOB / 3 wks 
-- 

3 wks post HFD 

placement 

C1, C2 M OB/OB Tg- 
HFD, 12 wks post 

DOB / 9.5 wks 

Pbs/ 5 days 

pr.BC 

9.5 wks post HFD 

placement 

C3, C4* F OB/OB Tg- 

HFD, 12 wks, 14 

wks post DOB / 

9.5 wks 

Pbs/ 5 days 

pr.BC 

9.5 wks post HFD 

placement 

C5, C6 M OB/OB Tg- 
HFD, 12 wks post 

DOB / 10.5 wks 

Pbs/ 5 days 

pr.BC 

10.5 wks post 

HFD placement 

C7, C8* F OB/OB Tg- 

HFD, 12 wks, 14 

wks post DOB / 

10.5 wks 

Pbs/ 5 days 

pr.BC 

10.5 wks post 

HFD placement 

C9, C10 M OB/OB Tg- 
HFD, 12 wks post 

DOB / 11.5 wks 

Pbs/ 5 days 

pr.BC 

11.5 wks post 

HFD placement 

C11 F OB/OB Tg- 
HFD, 12 wks post 

DOB / 11.5 wks 

Pbs/ 5 days 

pr.BC 

11.5 wks post 

HFD placement 

C12, C13 M OB/OB Tg- 
HFD, 12 wks post 

DOB / 12.5 wks 

Pbs/ 6 days 

pr. BC 

12.5 wks post 

HFD placement 

C14 F OB/OB Tg- 
HFD, 12 wks post 

DOB / 12.5 wks 

Pbs/ 6 days 

pr. BC 

12.5 wks post 

HFD placement 

C16 F ob/ob Tg- 
HFD, 17 wks post 

DOB / 5 wks 
PTX/ 5 days 

pr.BC 

5 wks post HFD 

placement 

C17, C18 F ob/ob Tg- 
HFD, 16.5 wks 

post DOB / 5 wks 

PTX/ 5 days 

pr.BC 

5 wks post HFD 

placement 

C19* F ob/ob Tg- 
HFD, 12 wks post 

DOB / 5 wks 

PTX/ 5 days 

pr.BC 

5 wks post HFD 

placement 

C20 F ob/ob Tg- 
HFD, 17 wks post 

DOB / 5 wks 

PTX/ 5 days 

pr.BC 

5 wks post HFD 

placement 

C22 F ob/ob Tg- 
HFD, 17 wks post 

DOB / 7 wks 

PTX/ 5 days 

pr. BC 

7 wks post HFD 

placement 
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Table 4.1  (continued) 

 

Sample ID Gender Genotype 

**Time of Diet 

Placement / 

duration 

Injection 
Blood collection 

(BC) 

C23, C24 F ob/ob Tg- 
HFD, 16.5 wks 

post DOB / 7 wks 

PTX/ 5 days 

pr.BC 

7 wks post HFD 

placement 

C25* F ob/ob Tg- 
HFD, 12 wks post 

DOB / 7 wks 

PTX/ 5 days 

pr.BC 

7 wks post HFD 

placement 

C27 F ob/ob Tg- 
HFD, 17 wks post 

DOB / 8 wks 

PTX/ 5 days 

pr.BC 

8 wks post HFD 

placement 

C28, C29 F ob/ob Tg- 
HFD, 16.5 wks 

post DOB / 8 wks 

PTX/ 5 days 

pr.BC 

8 wks post HFD 

placement 

C30* F ob/ob Tg- 
HFD, 12 wks post 

DOB / 8 wks 

PTX/ 5 days 

pr.BC 

8 wks post HFD 

placement 

C35* M ob/OB Tg+ 
HFD, 14 wks post 

DOB/ 2 wks 
-- 

2 wks post HFD 

placement 

C36* F ob/OB Tg+ 
LFD, throughout 

lifespan 
-- 15 wks post DOB 

C37* M ob/OB Tg- 
HFD, 10 wks post 

DOB/ 2 wks 
-- 

2 wks post HFD 

placement 

C38* F ob/OB Tg- 
LFD, throughout 

lifespan 
-- 15 wks post DOB 

ob/ob, homozygous knockout for leptin; OB/OB, wild-type; ob/OB, heterozygous for leptin;  

Tg, B6.Cg-Tg(IghMyc)22Bri/J; Tg+, positive for transgene; Tg-, negative for transgene; pr.BC, prior to blood collection;  

HFD, high fat diet; LFD, low fat diet; DOB, date of birth 

*Differences in timing due to mice DOB 

** Mice that were placed on HFD were on LFD prior to diet change 

PD1 - PD5 (same BC group); C1 - C14 (same BC group); C16 - C30 (same BC group); C35 - C38 (same BC group). a1: PD1 (1 distinct M), a2: PD2 (1 distinct 

M), a3: PD3 (1 distinct M), a4: PD4 (1 distinct F), a5: PD5* (1 distinct M) [a1 to a4 born ~5 days after a5]; a6: C1, C5, C9, C12 (1 distinct M for 4 BCs), a7: C2, C6, 

C10, C13 (1 distinct M for 4 BCs), a8: C3, C7, C11, C14 (1 distinct F for 4 BCs), a9: C4, C8 (1 distinct F for 2 BCs) [a9 born ~3wks before other groups]; a10: 

C16, C22, C27 (1 distinct F for 3 BCs), a11: C17, C23, C28 (1 distinct F for 3 BCs), a12: C18, C24, C29 (1 distinct F for 3 BC), a13: C19, C25, C30 (1 distinct F for 

3 BCs), a14: C20 (1 F for BC) [a10 is the oldest. a11 & a12 are 6 days younger than a10. a14 is 5 wks younger than a10 and ~4.5 wks younger than a11 & a12]; 

a15: C35 (1 M for 1 BC), a16: C36 (1 F for 1 BC), a17: C37 (1 M for 1 BC), a18: C38 (1 F for 1 BC) [a15 is the oldest. a16 & a18 are 1 wk younger than a15. a17 

is 4 wks younger than a15] 
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Table 4.2  Weight of Mice During Experiments* 

 

Sample ID Weight (g) Sample ID Weight (g) 

PD1, M 50.80 C16, F 58.82 

PD2, M 56.36 C17, F 54.93 

PD3, M 53.62 C18, F 54.60 

PD4, F 50.60 C19, F 54.25 

PD5, M 44.85 C20, F 60.30 

C1, M 38.54 C22, F 62.20 

C2, M 41.08 C23, F 59.70 

C3, F 24.45 C24, F 58.15 

C4, F 34.26 C25, F 58.94 

C5, M 37.89 C27, F 63.27 

C6, M 40.53 C28, F 61.78 

C7, F 24.15 C29, F 58.63 

C8, F 33.47 C30, F 60.49 

C9, M 37.86  C35, M 21.81 

C10, M 41.70 C36, F 18.53 

C11, F 24.48  C37, M 28.68 

C12, M 38.40 C38, F 20.86 

C13, M 41.80 -- -- 

C14, F 24.50 -- -- 
*Reference to Table 4.1 for details on injection, blood collection and diet placement. M – male, F- female. 

 

 

 
 

Figure 4.1  White Blood Count Frequency Distribution 
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Table 4.3  White Blood Cell Count from Blood of Eµ-myc Transgenic and Normal Mice  

 

  WBC (x103/µL) 

Sample ID Run 1 Run  2 Run 3 Mean Median 

PD1, M 8.8 8.7 8.0 8.5 8.7 

PD2, M 2.3 5.0 5.0 4.1 5.0 

PD3, M 6.2 6.2 6.5 6.3 6.2 

PD4, F 5.1 5.2 5.2 5.2 5.2 

PD5, M 20.5 20.0 19.7 20.1 20.0 

C1, M 3.1 6.1 3.1 4.1 3.1 

C2, M 7.1 7.2 7.1 7.1 7.1 

C3, F 4.2 4.2 3.8 4.1 4.2 

C4, F 4.2 4.2 4.2 4.2 4.2 

C5, M 8.3 8.2 7.8 8.1 8.2 

C6, M 8.2 9.0 9.2 8.8 9.0 

C7, F 5.1 4.7 4.9 4.9 4.9 

C8, F 5.6 5.4 5.8 5.6 5.6 

C9, M 4.8 4.7 4.7 4.7 4.7 

C10, M 4.7 4.4 4.0 4.4 4.4 

C11, F 3.2 3.0 3.3 3.2 3.2 

C12, M 6.1 5.5 5.6 5.7 5.6 

C13, M 6.1 6.2 6.3 6.2 6.2 

C14, F 3.9 4.1 3.8 3.9 3.9 

C22, F 11.5 11.6 11.8 11.6 11.6 

C23, F 6.4 5.5 6.2 6.0 6.2 

C24, F 12.8 12.4 12.1 12.4 12.4 

C25, F 14.7 13.7 14.7 14.4 14.7 

C27, F 7.4 7.2 7.1 7.2 7.2 

C28, F 2.1 2.3 2.2 2.2 2.2 

C29, F 12.2 11.2 12.0 11.8 12.0 

C30, F 10.2 10.2 10.5 10.3 10.2 

 C35, M 32.6 38.1 37.1 35.9 37.1 

C36, F 18.6 18.5 18.1 18.4 18.5 

 C37, M 3.9 3.7 3.8 3.8 3.8 

C38, F 5.4 5.3 5.4 5.4 5.4 
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Figure 4.2  Blood smear showing morphology of granulocytes and lymphoblasts (60x). (A) C13 – showing no 

evidence of malignancy. (B) C35 – showing three large cells consistent with malignant lymphocytes; one small 

lymphocyte, likely benign; one neutrophil; one lysed cell. (C) C36 – Two large cells consistent with malignant 

lymphocytes; one small lymphocyte, likely benign; one neutrophil. (D) PD5 – Three large cells consistent with 

malignant lymphocytes; one small lymphocyte, likely benign; two neutrophils; two lysed cells. 
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Table 4.4  Histological Classification for Spleen and Lymph Node Tissues of Normal and Eµ-myc Mice 

 

Sample ID Tissue Diagnosis 

C12, M Spleen 
Marked follicular lymphoid 

hyperplasia 

C13, M Spleen 
Marked follicular lymphoid 

hyperplasia 

C14, F Spleen 
Marked follicular lymphoid 

hyperplasia 

C27, F Spleen 
Marked follicular lymphoid 

hyperplasia & EMH 

C28, F Spleen 
Marked follicular lymphoid 

hyperplasia & EMH 

C28, F Lymph node 
Lymphoid hyperplasia cholesterol 

granuloma 

C29, F Spleen 
Marked follicular lymphoid 

hyperplasia & EMH 

C29, F Lymph node (by pancreas) 
Lymphoid hyperplasia cholesterol 

granuloma 

C29, F Lymph node (by salivary gland) Lots of mast cells 

C30, F Spleen 
Marked follicular lymphoid 

hyperplasia & EMH 

C35, M Spleen 
Marked follicular lymphoid 

hyperplasia & EMH 

C35, M Lymph node (by pancreas) 
Lots of histiocytes in peripancreatic 

lymph node 

C35, M Lymph node (by salivary gland) Lymphosarcoma 

C36, F Spleen 
Mild lymphoid hyperplasia & 

moderate EMH 

C36, F Skin with skeletal muscle Lymphosarcoma 

C37, M Spleen 
Marked follicular lymphoid 

hyperplasia 

C38, F Spleen Mild lymphoid hyperplasia & EMH 
EMH – extramedullary hematopoiesis 
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Figure 4.3  Spleen Histology of ob/ob Female (C28) Mice on a High Fat Diet for 8 weeks and following 3 

Consecutive Week Injections of 5mg/kg PTX. (A) and (B) show the expansion of periarteriolar lymphoid sheaths, 

100x and 200x respectively. (C) Extramedullary hematopoiesis in the red pulp (400x). (D) Enlarged view of the 

periarteriolar lymphoid sheath (400x). Left of the star in (D) is the arteriole 
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Figure 4.4  Histology of Lymph Node of ob/ob Female Mice (C28) on a High Fat Diet for 8 weeks and following 3 

Consecutive Week Injections of 5mg/kg PTX. (A), (B) and (C) show the central germinal centers with larger cells 

surrounded by small lymphocytes. (D) Enlarged imaged from image [E] showing the cholesterol cleft and the 

formation of a multinucleated giant cell (400x). (E) Lymph node expanded by cholesterol granuloma (100x). (F) 

Displaying foamy macrophages (200x). Square box is for the enlarged image in [D].  
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Figure 4.5  Histology of Lymph Nodes of Male (C35) ob/OB x Eµ-myc Mouse on a High Fat Diet for 2 weeks. (A) 

Showing no lymph node architecture and cells extending beyond the capsule (200x). (B) Enlarged image showing 

lymph node capsule (400x). (C) Monomorphic populations of large round cells with frequent mitoses (orange 

circle), and apoptotic cells often in clusters (green circle) (400x).  
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Table 4.5  Weights of Spleen and Lymph Node in C35-C38 

 

Sample ID Spleen Weight (mg) Lymph Node (mg) 

C35, M 249.7 664.8*, 504.7*,1051.2** 

C36, F 322.2 671.0 

C37, M 64.5 4.5 

C38, F 60.6 5.0 
*Lymph nodes by salivary gland, ** Lymph node by pancreas 
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C.1  PCR Genotyping for Lepob Status and Eµ-myc 

 

 

 
 

Figure C.1  Representative PCR results from the tail biopsies displaying the Lepob and Eμ-myc status of bred 

mice. 324 bp, internal positive control. 210 bp, B-cell lymphoma status. 155 bp; 155 bp, 100 bp and 55 bp; and 

55 bp correspond to wild-type, heterozygous, and mutant for obesity status 
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CHAPTER V 

Conclusion and Recommendations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

117 

 

5.1  Conclusion 

 

 Lipoproteins can direct intravenously injected nanoparticles away from their target sites and onto 

lipoproteins receptors in the body. Lipoproteins engage in lipid metabolism and thus the metabolic state of an 

individual as we have shown here can affect the biodistribution of injected nanoparticles. There are also gender-

related differences in terms of lipid metabolism, and these results as a whole should compel us to redefine our 

focus and how we conduct research in the field of nanomedicine. 

 Since the blood profile of each individual is unique and this is also affected by certain diseased states, we 

ought to narrow our focus of nanotherapy based on disease type, while also conditioning our treatments to the 

metabolic status of each individual. Obesity for example is one of such conditions where treatment for other 

diseases such as cancer on the same individual can be problematic since dosages and other underlying factors 

relating to adequacy of treatment and toxicity becomes an issue. It is therefore imperative that we expand our 

knowledge in this area since we showed here that the obesity status does affect biodistribution of nanoparticles.  

 In summary, our investigations communicate the need for taking into consideration the metabolic status 

of an individual when administering nanotherapeutic drugs since it can influence nanoparticle localization and also 

potentially worsen diseases such as cancer. 

 

5.2  Recommendations for Future Studies 

 

To further examine the effect of metabolic state in nanoparticle drug delivery, it is recommended that: 

(1) Future experiments be conducted that establish the molecular mechanisms behind the reduced 

localization of filomicelles to the organs of the liver and spleen in obese mice; possibly in relation to 

macrophage uptake and signaling events. 
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(2) In terms of lipoprotein and lipid metabolism, mice that have SCARBI-/- and LDLR-/- can potentially be 

used to identify further differences in plasma cholesterol uptake between the mouse genders. Additional 

studies using different diets (low-fat and high-fat diets) could possibly be utilized to determine how 

nanoparticle distribution is affected with mice embodying cholesterol plaques. 

(3) For the B-cell lymphoma research, a method (e.g. flow cytometry) of identifying different B-cell 

subpopulations in the blood and streamlining according to disease progression would be beneficial in 

comparing mice with different stages of the disease. Immunostaining of spleen and lymph node tissues 

can also be utilized to determine specific lineages and advancement of B-cell lymphoma. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

119 

 

VITA 
 

Uche Anozie earned his BSc (2010) and MSc (2012) in Chemical Engineering from the University of 

Akron in Ohio. His master’s thesis involved the use of encapsulation technologies with biodegradable polymers to 

prevent sulfur blooming in rubber materials. Following his master’s degree, he worked as a chemical engineer in 

the pharmaceutical industry before moving to Knoxville to pursue a PhD in Chemical and Biomolecular 

Engineering at the University of Tennessee. He joined Dr. Paul Dalhaimer’s group in July of 2015 where his 

research was focused on drug delivery systems with implications on metabolic states. 

 


	The Influence of Metabolic State on Targeted Drug Delivery, Biodistribution and Efficacy of Nanoparticles
	Recommended Citation

	tmp.1581698523.pdf.KtLEg

